Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/80082
Type: Thesis
Title: Design techniques for low power mixed analog-digital circuits with application to smart wireless systems.
Author: Al-Sarawi, Said Fares Khalil
Issue Date: 2003
School/Discipline: School of Electrical and Electronic Engineering
Abstract: This dissertation presents and discusses new design techniques for mixed analog-digital circuits with emphases on low power and small area for standard low-cost CMOS VLSI technology. The application domain of the devised techniques is radio frequency identification (RFID) systems, however the presented techniques are applicable to wide range of mixed mode analog-digital applications. Hence the techniques herein apply to a range of smart wireless or mobile systems. The integration of both analog and digital circuits on a single substrate has many benefits such as reducing the system power, increasing the system reliability, reducing the system size and providing high inter-system communications speed - hence, a cost effective system implementation with increased performance. On the other hand, some difficulties arise from the fact that standard low-cost CMOS technologies are tuned toward maximising digital circuit performance and increasing transistor density per unit area. Usually these technologies have a wide spread in transistor parameters that require new design techniques that provide circuit characteristics based on relative transistor parameters rather than on the absolute value of these parameters. This research has identified new design techniques for mostly analog and some digital circuits for implementation in standard CMOS technologies with design parameters dependent on the relative values of process parameters, resulting in technology independent circuit design techniques. The techniques presented and discussed in this dissertation are (i) applied to the design of low-voltage and low-power controlled gain amplifiers, (ii) digital trimming techniques for operational amplifiers, (iii) low-power and low-voltage Schmitt trigger circuits, (iv) very low frequency to medium frequency low power oscillators, (v) low power Gray code counters, (vi) analog circuits utilising the neuron MOS transistor, (vii) high value floating resistors, and (viii) low power application specific integrated circuits (ASICs) that are particularly needed in radio frequency identification systems. The new techniques are analysed, simulated and verified experimentally via five chips fabricated through the MOSIS service.
Advisor: Abbott, Derek
Dissertation Note: Thesis (Ph.D.) -- University of Adelaide, School of Electrical and Electronic Engineering, 2003
Keywords: transistors; analog-digital; wireless; circuits
Provenance: This electronic version is made publicly available by the University of Adelaide in accordance with its open access policy for student theses. Copyright in this thesis remains with the author. This thesis may incorporate third party material which has been used by the author pursuant to Fair Dealing exception. If you are the author of this thesis and do not wish it to be made publicly available or If you are the owner of any included third party copyright material you wish to be removed from this electronic version, please complete the take down form located at: http://www.adelaide.edu.au/legals
Appears in Collections:Research Theses

Files in This Item:
File Description SizeFormat 
01front.pdf988.63 kBAdobe PDFView/Open
02whole.pdf19.08 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.