Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/81527
Citations
Scopus Web of Science® Altmetric
?
?
Type: Journal article
Title: Encapsulation of lipase in mesoporous silica yolk-shell spheres with enhanced enzyme stability
Author: Zhao, Z.
Jian, L.
Hahn, M.
Qiao, S.
Middelberg, A.
He, L.
Citation: RSC Advances: an international journal to further the chemical sciences, 2013; 3(44):22008-22013
Publisher: Royal Society of Chemistry
Issue Date: 2013
ISSN: 2046-2069
2046-2069
Statement of
Responsibility: 
Zheng Yang Zhao, Jian Liu, Mandy Hahn, Shizhang Qiao, Anton P. J. Middelberg and Lizhong He
Abstract: Enzyme encapsulation is an attractive method among the different immobilization strategies to improve the reusability and stability of enzymes because it can separate enzymes from a hazardous external environment. However, current encapsulation methods have limitations including enzyme leakage. In this study, a new approach based on a two-step soft templating method has been proposed to encapsulate lipase within substrate permeable mesoporous silica yolk–shell spheres. In the first step, lipase was immobilized onto epoxy functionalized silica nanospheres that serve as the core materials. The core materials were mixed with a fluorocarbon surfactant, FC4, to form a core–vesicle complex. In the second step, a mesoporous silica shell was assembled surrounding the core–vesicle complex to form the yolk–shell structure with the lipase encapsulated. The mesoporous silica shell has a pore size of 2.1 nm, which is permeable to the reactant and product while isolating the enzymes from harmful external conditions. The encapsulated lipase retained 87.5% of its activity after thermal treatment at 70 °C for 2 hours while the free enzyme lost 99.5% of its activity under the same treatment. Importantly, the encapsulated lipase shows significantly enhanced resistance to degradation by proteases.
Keywords: prostate cancer
targetted gene therapy
calcium permeable channels
LNCaP cells
androgen
adenovirus
caspase
Rights: Copyright status unknown
DOI: 10.1039/c3ra43382j
Grant ID: http://purl.org/au-research/grants/arc/DP1094070
Published version: http://dx.doi.org/10.1039/c3ra43382j
Appears in Collections:Aurora harvest 4
Chemical Engineering publications

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.