Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/81527
Citations
Scopus Web of Science® Altmetric
?
?
Full metadata record
DC FieldValueLanguage
dc.contributor.authorZhao, Z.-
dc.contributor.authorJian, L.-
dc.contributor.authorHahn, M.-
dc.contributor.authorQiao, S.-
dc.contributor.authorMiddelberg, A.-
dc.contributor.authorHe, L.-
dc.date.issued2013-
dc.identifier.citationRSC Advances: an international journal to further the chemical sciences, 2013; 3(44):22008-22013-
dc.identifier.issn2046-2069-
dc.identifier.issn2046-2069-
dc.identifier.urihttp://hdl.handle.net/2440/81527-
dc.description.abstractEnzyme encapsulation is an attractive method among the different immobilization strategies to improve the reusability and stability of enzymes because it can separate enzymes from a hazardous external environment. However, current encapsulation methods have limitations including enzyme leakage. In this study, a new approach based on a two-step soft templating method has been proposed to encapsulate lipase within substrate permeable mesoporous silica yolk–shell spheres. In the first step, lipase was immobilized onto epoxy functionalized silica nanospheres that serve as the core materials. The core materials were mixed with a fluorocarbon surfactant, FC4, to form a core–vesicle complex. In the second step, a mesoporous silica shell was assembled surrounding the core–vesicle complex to form the yolk–shell structure with the lipase encapsulated. The mesoporous silica shell has a pore size of 2.1 nm, which is permeable to the reactant and product while isolating the enzymes from harmful external conditions. The encapsulated lipase retained 87.5% of its activity after thermal treatment at 70 °C for 2 hours while the free enzyme lost 99.5% of its activity under the same treatment. Importantly, the encapsulated lipase shows significantly enhanced resistance to degradation by proteases.-
dc.description.statementofresponsibilityZheng Yang Zhao, Jian Liu, Mandy Hahn, Shizhang Qiao, Anton P. J. Middelberg and Lizhong He-
dc.language.isoen-
dc.publisherRoyal Society of Chemistry-
dc.rightsCopyright status unknown-
dc.source.urihttp://dx.doi.org/10.1039/c3ra43382j-
dc.subjectprostate cancer-
dc.subjecttargetted gene therapy-
dc.subjectcalcium permeable channels-
dc.subjectLNCaP cells-
dc.subjectandrogen-
dc.subjectadenovirus-
dc.subjectcaspase-
dc.titleEncapsulation of lipase in mesoporous silica yolk-shell spheres with enhanced enzyme stability-
dc.typeJournal article-
dc.identifier.doi10.1039/c3ra43382j-
dc.relation.granthttp://purl.org/au-research/grants/arc/DP1094070-
pubs.publication-statusPublished-
dc.identifier.orcidQiao, S. [0000-0002-1220-1761] [0000-0002-4568-8422]-
Appears in Collections:Aurora harvest 4
Chemical Engineering publications

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.