Please use this identifier to cite or link to this item: http://hdl.handle.net/2440/81637
Citations
Scopus Web of Science® Altmetric
?
?
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLi, X.en
dc.contributor.authorHu, W.en
dc.contributor.authorShen, C.en
dc.contributor.authorDick, A.en
dc.contributor.authorZhang, Z.en
dc.date.issued2013en
dc.identifier.citationIEEE Transactions on Knowledge & Data Engineering, 2013; In Press(10):1-9en
dc.identifier.issn1558-2191en
dc.identifier.issn1041-4347en
dc.identifier.urihttp://hdl.handle.net/2440/81637-
dc.description.abstractSpectral clustering is a powerful tool for unsupervised data analysis. In this paper, we propose a context-aware hypergraph simi- larity measure (CAHSM), which leads to robust spectral clustering in the case of noisy data. We construct three types of hypergraph—the pairwise hypergraph, the k-nearest-neighbor (kNN) hypergraph, and the high-order over-clustering hypergraph. The pairwise hypergraph captures the pairwise similarity of data points; the kNN hypergraph captures the neighborhood of each point; and the clustering hyper- graph encodes high-order contexts within the dataset. By combining the affinity information from these three hypergraphs, the CAHSM algorithm is able to explore the intrinsic topological information of the dataset. Therefore, data clustering using CAHSM tends to be more robust. Considering the intra-cluster compactness and the inter-cluster separability of vertices, we further design a discriminative hypergraph partitioning criterion (DHPC). Using both CAHSM and DHPC, a robust spectral clustering algorithm is developed. Theoretical analysis and experimental evaluation demonstrate the effectiveness and robustness of the proposed algorithm.en
dc.description.statementofresponsibilityXi Li, Weiming Hu, Chunhua Shen, Anthony Dick, Zhongfei Zhangen
dc.language.isoenen
dc.publisherIEEEen
dc.rightsCopyright © 2014 IEEE. All rights reserved.en
dc.subjectHypergraph construction; spectral clustering; graph partitioning; similarity measureen
dc.titleContext-aware hypergraph construction for robust spectral clusteringen
dc.typeJournal articleen
dc.identifier.rmid0020137110en
dc.identifier.doi10.1109/TKDE.2013.126en
dc.identifier.pubid15072-
pubs.library.collectionComputer Science publicationsen
pubs.verification-statusVerifieden
pubs.publication-statusPublisheden
dc.identifier.orcidShen, C. [0000-0002-8648-8718]en
dc.identifier.orcidDick, A. [0000-0001-9049-7345]en
Appears in Collections:Computer Science publications

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.