Please use this identifier to cite or link to this item:
Scopus Web of Science® Altmetric
Type: Journal article
Title: SGTA: A new player in the molecular co-chaperone game
Author: Philp, L.
Butler, M.
Hickey, T.
Butler, L.
Tilley, W.
Day, T.
Citation: Hormones and Cancer, 2013; 4(6):343-357
Publisher: Springer New York LLC
Issue Date: 2013
ISSN: 1868-8497
Statement of
Lisa K. Philp, Miriam S. Butler, Theresa E. Hickey, Lisa M. Butler, Wayne D. Tilley, Tanya K. Day
Abstract: Small glutamine-rich tetratricopeptide repeat-containing protein α (SGTA) is a steroid receptor molecular co-chaperone that may substantially influence hormone action and, consequently, hormone-mediated carcinogenesis. To date, published studies describe SGTA as a protein that is potentially critical in a range of biological processes, including viral infection, cell division, mitosis, and cell cycle checkpoint activation. SGTA interacts with the molecular chaperones, heat shock protein 70 (HSP70) and HSP90, and with steroid receptor complexes, including those containing the androgen receptor. Steroid receptors are critical for maintaining cell growth and differentiation in hormonally regulated tissues, such as male and female reproductive tissues, and also play a role in disease states involving these tissues. There is growing evidence that, through its interactions with chaperones and steroid receptors, SGTA may be a key player in the pathogenesis of hormonally influenced disease states, including prostate cancer and polycystic ovary syndrome. Research into the function of SGTA has been conducted in several model organisms and cell types, with these studies showing that SGTA functionality is cell-specific and tissue-specific. However, very few studies have been replicated in multiple cell types or experimental systems. Although a broad range of functions have been attributed to SGTA, there is a serious lack of mechanistic information to describe how SGTA acts. In this review, published evidence linking SGTA with hormonally regulated disease states is summarized and discussed, highlighting the need for future research to more clearly define the biological function(s) of this potentially important co-chaperone.
Keywords: Animals; Humans; Polycystic Ovary Syndrome; Prostatic Neoplasms; Steroids; Carrier Proteins; Models, Animal; Protein Folding; Female; Male
Rights: © 2013 Springer Science+Business Media New York.
RMID: 0020133051
DOI: 10.1007/s12672-013-0151-0
Grant ID:
Appears in Collections:Medicine publications

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.