Please use this identifier to cite or link to this item:
Scopus Web of Science® Altmetric
Type: Journal article
Title: Combining population genetics, species distribution modelling and field assessments to understand a species vulnerability to climate change
Author: McCallum, K.
Guerin, G.
Breed, M.
Lowe, A.
Citation: Austral Ecology, 2014; 39(1):17-28
Publisher: John Wiley
Issue Date: 2014
ISSN: 1442-9985
Statement of
Kimberly P. McCallum, Greg R. Guerin, Martin F. Breed and Andrew J. Lowe
Abstract: Climate change is recognized as a major threat to biodiversity. Multidisciplinary approaches that combine population genetics and species distribution modelling to assess these threats and recommend conservation actions are critical but rare. Combined, these methods provide independent verification and a more compelling case for developing conservation actions. This study integrates these data streams together with field assessments and spatial analyses to develop future genetic resource management recommendations. The study species was Callistemon teretifolius (Needle Bottlebrush), a shrub species endemic to the Mount Lofty and Flinders Ranges, South Australia, and potentially vulnerable to climate change. Chloroplast microsatellite and Amplified Fragment Length Polymorphism data were combined with species distribution modelling (MaxEnt), spatial analysis and field assessment to evaluate climate change vulnerability. Two major genetic groups were identified (Mount Lofty and Flinders Ranges). Populations in the Flinders Ranges, especially the Southern Flinders Ranges exhibited the highest genetic diversity, indicating a possible genetic refugium. Lower genetic diversity to the south in the Mount Lofty Ranges and north in the Gammon Ranges may be due to post‐glacial expansion into these areas from the Flinders Ranges or loss of alleles. Low levels of contemporary gene flow were identified, which suggests Callistemon teretifolius may have a limited capacity to respond to climate change through migration. Range restrictions were predicted for all future climates, especially in the north. It is likely that C. teretifolius will be adversely affected by climate change, due to limited gene flow, predicted range restriction and loss of suitable habitat. The Southern Flinders Ranges should be a priority for conservation because it contains the highest number of individuals and genetic diversity. We recommend monitoring and adaptive management involving restoration in the Southern Flinders Ranges, potentially incorporating genetic translocations from other areas to capture diversity, to assist C. teretifolius to adapt to climate change.
Keywords: climate change; conservation genetics; local endemic; range contraction; refugium; species distribution modelling
Rights: © 2013 The Authors.
RMID: 0030000184
DOI: 10.1111/aec.12041
Grant ID:
Appears in Collections:Environment Institute publications

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.