Please use this identifier to cite or link to this item: http://hdl.handle.net/2440/82026
Citations
Scopus Web of Science® Altmetric
?
?
Type: Journal article
Title: Artificial neural network classification of pharyngeal high-resolution manometry with impedance data
Author: Hoffman, M.
Mielens, J.
Omari, T.
Rommel, N.
Jiang, J.
McCulloch, T.
Citation: Laryngoscope, 2013; 123(3):713-720
Publisher: Lippincott Williams & Wilkins
Issue Date: 2013
ISSN: 0023-852X
0023-852X
Statement of
Responsibility: 
Matthew R. Hoffman, Jason D. Mielens, Taher I. Omari, Nathalie Rommel, Jack J. Jiang, Timothy M. McCulloch
Abstract: <h4>Objectives/hypothesis</h4>To use classification algorithms to classify swallows as safe, penetration, or aspiration based on measurements obtained from pharyngeal high-resolution manometry (HRM) with impedance.<h4>Study design</h4>Case series evaluating new method of data analysis.<h4>Methods</h4>Multilayer perceptron, an artificial neural network (ANN), was evaluated for its ability to classify swallows as safe, penetration, or aspiration. Data were collected from 25 disordered subjects swallowing 5- or 10-mL boluses. Following extraction of relevant parameters, a subset of the data was used to train the models, and the remaining swallows were then independently classified by the ANN.<h4>Results</h4>A classification accuracy of 89.4 ± 2.4% was achieved when including all parameters. Including only manometry-related parameters yielded a classification accuracy of 85.0 ± 6.0%, whereas including only impedance-related parameters yielded a classification accuracy of 76.0 ± 4.9%. Receiver operating characteristic analysis yielded areas under the curve of 0.8912 for safe, 0.8187 for aspiration, and 0.8014 for penetration.<h4>Conclusions</h4>Classification models show high accuracy in classifying swallows from dysphagic patients as safe or unsafe. HRM-impedance with ANN represents one method that could be used clinically to screen for patients at risk for penetration or aspiration.
Keywords: Artificial neural network; classification model; high-resolution manometry; impedance; aspiration; dysphagia; Level of Evidence: 4
Rights: Copyright © 2012 The American Laryngological, Rhinological, and Otological Society, Inc.
RMID: 0020134137
DOI: 10.1002/lary.23655
Grant ID: http://purl.org/au-research/grants/nhmrc/1009344
Appears in Collections:Paediatrics publications

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.