Please use this identifier to cite or link to this item:
Scopus Web of Science® Altmetric
Type: Journal article
Title: A genetic and metabolic approach to redirection of biochemical pathways of Clostridium butyricum for enhancing hydrogen production
Author: Cai, G.
Jin, B.
Monis, P.
Saint, C.
Citation: Biotechnology and Bioengineering, 2013; 110(1):338-342
Publisher: John Wiley & Sons Inc
Issue Date: 2013
ISSN: 0006-3592
Statement of
Guiqin Cai, Bo Jin, Paul Monis, Christopher Saint
Abstract: Clostridium butyricum, a well known H(2) producing bacterium, produces lactate, butyrate, acetate, ethanol, and CO(2) as its main by-products from glucose. The conversion of pyruvate to lactate, butyrate and ethanol involves oxidation of NADH. It was hypothesized that the NADH could be increased if the formation of these by-products could be eliminated, resulting in enhancing H(2) yield. Herein, this study aimed to establish a genetic and metabolic approach for enhancing H(2) yield via redirection of metabolic pathways of a C. butyricum strain. The ethanol formation pathway was blocked by disruption of aad (encoding aldehyde-alcohol dehydrogenase) using a ClosTron plasmid. Although elimination of ethanol formation alone did not increase hydrogen production, the resulting aad-deficient mutant showed approximately 20% enhanced performance in hydrogen production with the addition of sodium acetate. This work demonstrated the possibility of improving hydrogen yield by eliminating the unfavorable by-products ethanol and lactate.
Keywords: Clostridium butyricum
ethanol formation pathway
aad disruption
NaAc addition
fermentative hydrogen production
Rights: © 2012 Wiley Periodicals, Inc.
DOI: 10.1002/bit.24596
Published version:
Appears in Collections:Aurora harvest 4
Earth and Environmental Sciences publications

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.