Please use this identifier to cite or link to this item:
Scopus Web of Science® Altmetric
Type: Journal article
Title: A maximum likelihood proton path formalism for application in proton computed tomography
Author: Schulte, R.
Penfold, S.
Tafas, J.
Schubert, K.
Citation: Medical Physics, 2008; 35(11):4849-4856
Publisher: Amer AssocPhysicists Amer Inst Physics
Issue Date: 2008
ISSN: 0094-2405
Statement of
R. W. Schulte, S. N. Penfold, J. T. Tafas and K. E. Schubert
Abstract: The limited spatial resolution in proton computed tomography (pCT) in comparison to x-ray CT is related to multiple Coulomb scattering(MCS) within the imaged object. The current generation pCT design utilizes silicon detectors that measure the position and direction of individual protons prior to and post-traversing the patient to maximize the knowledge of the path of the proton within the imaged object. For efficient reconstruction with the proposed pCT system, one needs to develop compact and flexible mathematical formalisms that model the effects of MCS as the proton traverses the imaged object. In this article, a compact, matrix-based most likely path (MLP) formalism is presented employing Bayesian statistics and a Gaussian approximation of MCS. Using GEANT4 simulations in a homogeneous 20cm water cube, the MLP expression was found to be able to predict the Monte Carlo tracks of 200 MeV protons to within 0.6mm on average when employing 3σ cuts on the relative exit angle and exit energy. These cuts were found to eliminate the majority of events not conforming to the Gaussian model of MCS used in the MLP derivation.
Keywords: Proton computed tomography, most likely path formalism,spatial resolution
Rights: © 2008 American Association of Physicists in Medicine.
DOI: 10.1118/1.2986139
Published version:
Appears in Collections:Aurora harvest 4
Physics publications

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.