Please use this identifier to cite or link to this item: http://hdl.handle.net/2440/84286
Type: Conference paper
Title: Experimental results of a 1D passive magnetic spring approaching quasi-zero stiffness and using active skyhook damping
Author: Robertson, W.
Cazzolato, B.
Zander, A.
Citation: Proceedings of Acoustics 2013 Victor Harbor: Science Technology and Amenity, Annual Conference of the Australian Acoustical Society, 17-20 November, 2013/ Terrance McMinn (ed.): 8p.
Publisher: Australian Acoustical Society
Publisher Place: South Australia
Issue Date: 2013
ISBN: 9780646912189
Conference Name: Acoustics 2013 : Science Technology and Amenity (2013 : Victor Harbor, South Australia)Victor Harbor)
Statement of
Responsibility: 
William S. P. Robertson, Ben Cazzolato, and Anthony Zander
Abstract: The use of permanent magnets has been investigated in recent years to provide load bearing forces for vibration isolation. Using two pairs of magnets in both repulsion and attraction, it is possible to generate a force-displacement characteristic that has an inflection point at zero stiffness, known as the quasi-zero stiffness location. Since vibration isolation performance is known to improve with lower resonance frequencies and therefore isolator stiffnesses, the quasi-zero stiffness location is considered the point at which vibration isolation is best achieved. However, since this location is only marginally stable, for passive operation it is only possible in practice for the equilibrium position of the system to asymptotically approach the quasi-zero stiffness point. The proximity to this point that can be achieved depends on the loads to be borne and the amplitude of vibration to be isolated. In previous works, this particular magnetic system has seen theoretical treatment. A prototype of the magnetic system will be presented that uses magnet pairs mounted on a rigid lever arm to constrain their motion to a single degree of freedom. Experimental results are presented that demonstrate the quasi-zero stiffness behaviour of the practical system. Finally, a novel electromagnetic actuator is incorporated into the design to attenuate the resonance peak via active skyhook damping using accelerometer measurements. The limits of this feedback are shown to be caused by the filter poles of the accelerometers used to measure the vibration.
Rights: Copyright © 2013, The Australian Acoustical Society
RMID: 0020135463
Description (link): http://www.acoustics.asn.au/conference_proceedings/AAS2013/
http://www.acoustics.asn.au/conference_proceedings/AAS2013/papers/AAS2013-Information.pdf
Published version: http://www.acoustics.asn.au/conference_proceedings/AAS2013/papers/p27.pdf
Appears in Collections:Mechanical Engineering conference papers

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.