Please use this identifier to cite or link to this item:
Scopus Web of Science® Altmetric
Type: Journal article
Title: Plasmonic resonance toward terahertz perfect absorbers
Author: Withayachumnankul, W.
Shah, C.
Fumeaux, C.
Ung, B.
Padilla, W.
Bhaskaran, M.
Abbott, D.
Sriram, S.
Citation: Photonics, 2014; 1(7):625-630
Publisher: ACS Publications
Issue Date: 2014
ISSN: 2304-6732
Statement of
Withawat Withayachumnankul, Charan Manish Shah, Christophe Fumeaux, Benjamin S-Y Ung, Willie J. Padilla, Madhu Bhaskaran, Derek Abbott and Sharath Sriram
Abstract: Metamaterial perfect absorbers have garnered significant interest with applications in sensing, imaging, and energy harnessing. Of particular interest are terahertz absorbers to overcome the weak terahertz response of natural materials. Here, we propose lossy plasmonic resonance in silicon-based annular microcavities for perfect terahertz absorption. This mechanism is in stark contrast to earlier demonstrations of conventional terahertz perfect absorbers that invoke Lorentzian electric and magnetic resonances. A fundamental cavity mode coupled to coaxial surface plasmon polaritons is responsible for the predicted exceptional absorption of −58 dB with a 90% absorption bandwidth of 30%. The performance is in agreement with experimental validation and consistent with critical coupling and resonance conditions. This specific cavity design possesses great thermal isolation and minimal electromagnetic coupling between unit cells. These unique features exclusive to the plasmonic cavity introduce a promising avenue for terahertz imaging with enhanced contrast, resolution, and sensitivity.
Keywords: Metamaterial; plasmonics; perfect absorber; cavity mode; THz-TDS; terahertz; multiphysics simulation
Rights: © 2014 American Chemical Society
RMID: 0020139330
DOI: 10.1021/ph500110t
Grant ID:
Appears in Collections:Electrical and Electronic Engineering publications

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.