Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/84562
Citations
Scopus Web of Science® Altmetric
?
?
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHartnett, J.-
dc.contributor.authorLuiten, A.-
dc.date.issued2011-
dc.identifier.citationReviews of Modern Physics, 2011; 83(1):1-9-
dc.identifier.issn0034-6861-
dc.identifier.issn1539-0756-
dc.identifier.urihttp://hdl.handle.net/2440/84562-
dc.description.abstractThe stability of pulse arrival times from pulsars and white dwarfs have been reanalyzed using several analysis tools for measuring the noise characteristics of sampled time and frequency data. The best terrestrial artificial clocks are shown to substantially exceed the performance of astronomical sources as timekeepers in terms of accuracy (as defined by cesium primary frequency standards) and stability. This superiority in stability can be directly demonstrated over time periods up to 2 years, where there is high quality data for both. Beyond 2 years there is a deficiency of data for clock-to-clock comparisons, and both terrestrial and astronomical clocks show equal performance being equally limited by the quality of the reference time scales used to make the comparisons. Nonetheless, the detailed accuracy evaluations of modern terrestrial clocks imply that these new clocks are likely to have a stability better than any astronomical source up to comparison times of at least hundreds of years. This article is intended to provide a correct appreciation of the relative merits of natural and artificial clocks. The use of natural clocks as tests of physics under the most extreme conditions is entirely appropriate; however, the contention that these natural clocks, particularly white dwarfs, can compete as timekeepers against devices constructed by mankind is shown to be doubtful.-
dc.description.statementofresponsibilityJohn G. Hartnett and Andre N. Luiten-
dc.language.isoen-
dc.publisherAmerican Physical Society-
dc.rights© 2011 The American Physical Society-
dc.source.urihttp://dx.doi.org/10.1103/revmodphys.83.1-
dc.titleColloquium: Comparison of astrophysical and terrestrial frequency standards-
dc.typeJournal article-
dc.identifier.doi10.1103/RevModPhys.83.1-
pubs.publication-statusPublished-
dc.identifier.orcidLuiten, A. [0000-0001-5284-7244]-
Appears in Collections:Aurora harvest 7
IPAS publications

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.