Please use this identifier to cite or link to this item:
https://hdl.handle.net/2440/84952
Citations | ||
Scopus | Web of Science® | Altmetric |
---|---|---|
?
|
?
|
Type: | Journal article |
Title: | New stability criteria for neural networks with distributed and probabilistic delays |
Author: | Yang, R. Gao, H. Lam, J. Shi, P. |
Citation: | Circuits, Systems and Signal Processing, 2009; 28(4):505-522 |
Publisher: | SP Birkhäuser Verlag Boston |
Issue Date: | 2009 |
ISSN: | 0278-081X 1531-5878 |
Statement of Responsibility: | Rongni Yang, Huijun Gao, James Lam, Peng Shi |
Abstract: | This paper is concerned with the stability analysis of neural networks with distributed and probabilistic delays. The probabilistic delay satisfies a certain probability distribution. By introducing a stochastic variable with a Bernoulli distribution, the neural network with random time delays is transformed into one with deterministic delays and stochastic parameters. New conditions for the exponential stability of such neural networks are obtained by employing new Lyapunov–Krasovskii functionals and novel techniques for achieving delay dependence. The proposed conditions reduce the conservatism by considering not only the range of the time delays, but also the probability distribution of their variation. A numerical example is provided to show the advantages of the proposed techniques. |
Keywords: | Distributed delay Exponential stability Neural networks Lyapunov–Krasovskii functional Time-varying delay |
Rights: | © Birkhäuser Boston 2008 |
DOI: | 10.1007/s00034-008-9092-1 |
Appears in Collections: | Aurora harvest 2 Electrical and Electronic Engineering publications |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.