Please use this identifier to cite or link to this item: http://hdl.handle.net/2440/86344
Citations
Scopus Web of Science® Altmetric
?
?
Type: Journal article
Title: Selection of smoothing parameter estimators for general regression neural networks - applications to hydrological and water resources modelling
Author: Li, X.
Zecchin, A.C.
Maier, H.R.
Citation: Environmental Modelling & Software, 2014; 59:162-186
Publisher: Elsevier
Issue Date: 2014
ISSN: 1364-8152
1873-6726
Statement of
Responsibility: 
Xuyuan Li, Aaron C. Zecchin, Holger R. Maier
Abstract: Abstract not available
Keywords: General regression neural networks; Smoothing parameter estimators; Artificial neural networks; Multi-layer perceptrons; Extreme and average events; Hydrology and water resources
Rights: © 2014 Elsevier Ltd. All rights reserved.
RMID: 0030008410
DOI: 10.1016/j.envsoft.2014.05.010
Appears in Collections:Civil and Environmental Engineering publications

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.