Please use this identifier to cite or link to this item:
Scopus Web of Science® Altmetric
Type: Conference paper
Title: A hybrid SLAM representation for dynamic marine environments
Author: Bibby, C.
Reid, I.
Citation: IEEE International Conference on Robotics and Automation, 2010, pp.257-264
Publisher: IEEE
Publisher Place: USA
Issue Date: 2010
Series/Report no.: IEEE International Conference on Robotics and Automation ICRA
ISBN: 9781424450404
ISSN: 1050-4729
Conference Name: IEEE International Conference on Robotics and Automation (ICRA) (3 May 2010 - 7 May 2010 : Anchorage, AK)
Statement of
Charles Bibby, Ian Reid
Abstract: We present a hybrid SLAM system for marine environments that combines cubic splines to represent the trajectories of dynamic objects, point features to represent stationary objects and an occupancy grid to represent land masses. This hybrid representation enables SLAM to be applied in environments with moving objects, where solutions using point features alone are computationally prohibitive or where dense objects e.g. landmasses can not be represented correctly using point features. Estimation is achieved using a sliding window framework with reversible data-association and reversible model-selection. Our main contributions are: (i) a hybrid representation of the environment; (ii) occupancy grid fusion is continually refined for the duration of the sliding window; (iii) the trajectories of dynamic objects are represented using cubic splines and (iv) radar scans are re-rendered at a sub-scan resolution to compensate for the egomotion during the scan acquisition period. We show that the continual refinement of the occupancy grid greatly improves the quality of the resultant map, leading to a better estimate of the egomotion and therefore better estimates of the trajectories of dynamic objects. We also demonstrate that the use of cubic splines to represent trajectories has two major advantages: (i) the state space is compressed i.e. many vehicle poses can be represented using a single spline section and (ii) the trajectory becomes continuous and so fusing information from asynchronous sensors running at multiple frequencies becomes trivial. The efficacy of our system is demonstrated using real marine radar data, showing that it can successfully estimate the positions/velocities of objects and landmasses observed during a typical voyage on a small boat.
Rights: ©2010 IEEE
DOI: 10.1109/ROBOT.2010.5509262
Appears in Collections:Aurora harvest 7
Computer Science publications

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.