Please use this identifier to cite or link to this item:
Scopus Web of Science® Altmetric
Type: Journal article
Title: On an antiplane crack problem for functionally graded elastic materials
Author: Clements, D.
Citation: Australia and New Zealand Industrial and Applied Mathematics (ANZIAM) Journal, 2010; 52(1):69-86
Publisher: Cambridge University Press (CUP)
Issue Date: 2010
ISSN: 1446-1811
Statement of
David L. Clements
Abstract: This paper examines an antiplane crack problem for a functionally graded anisotropic elastic material in which the elastic moduli vary quadratically with the spatial coordinates. A solution to the crack problem is obtained in terms of a pair of integral equations. An iterative solution to the integral equations is used to examine the effect of the anisotropy and varying elastic moduli on the crack tip stress intensity factors and the crack displacement.
Keywords: crack problems
functionally graded materials
Rights: © Australian Mathematical Society 2011
DOI: 10.1017/S1446181111000551
Appears in Collections:Aurora harvest 2
Mathematical Sciences publications

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.