Please use this identifier to cite or link to this item:
https://hdl.handle.net/2440/88046
Citations | ||
Scopus | Web of Science® | Altmetric |
---|---|---|
?
|
?
|
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Hartnett, J. | - |
dc.contributor.author | Nand, N. | - |
dc.date.issued | 2010 | - |
dc.identifier.citation | IEEE Transactions on Microwave Theory and Techniques, 2010; 58(12):3580-3586 | - |
dc.identifier.issn | 0018-9480 | - |
dc.identifier.issn | 1557-9670 | - |
dc.identifier.uri | http://hdl.handle.net/2440/88046 | - |
dc.description.abstract | A low maintenance long-term operational cryogenic sapphire oscillator has been implemented at 11.2 GHz using an ultra-low-vibration cryostat and pulse-tube cryocooler. It is currently the world's most stable microwave oscillator employing a cryocooler. Its performance is explained in terms of temperature and frequency stability. The phase noise and the Allan deviation of frequency fluctuations have been evaluated by comparing it to an ultra-stable liquid-helium cooled cryogenic sapphire oscillator in the same laboratory. Assuming both contribute equally, the Allan deviation evaluated for the cryocooled oscillator is σy ≈ 1 × 10-15τ-1/2 for integration times 1 <; τ <; 10 s with a minimum σy = 3.9 × 10-16 at τ = 20 s. The long term frequency drift is less than 5×10-14/day. From the measured power spectral density of phase fluctuations, the single-sideband phase noise can be represented by Lφ(f) = 10-14.0/f4+10-11.6/f3+10-10.0/f2+10-10.2/f+ 10-11.0 rad2/Hz for Fourier frequencies 10-3 <; f <; 103 Hz in the single oscillator. As a result, Lφ ≈ -97.5 dBc/Hz at 1-Hz offset from the carrier. | - |
dc.description.statementofresponsibility | John G. Hartnett and Nitin R. Nand | - |
dc.language.iso | en | - |
dc.publisher | IEEE | - |
dc.rights | © 2010 IEEE | - |
dc.subject | Cryocooler | - |
dc.subject | cryogenic sapphire oscillator | - |
dc.subject | frequency stability | - |
dc.subject | phase noise | - |
dc.title | Ultra-low vibration pulse-tube cryocooler stabilized cryogenic sapphire oscillator with 10⁻¹⁶ fractional frequency stability | - |
dc.title.alternative | Ultra-low vibration pulse-tube cryocooler stabilized cryogenic sapphire oscillator with 10(-16) fractional frequency stability | - |
dc.type | Journal article | - |
dc.identifier.doi | 10.1109/TMTT.2010.2086551 | - |
pubs.publication-status | Published | - |
Appears in Collections: | Aurora harvest 7 Physics publications |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.