Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/88046
Citations
Scopus Web of Science® Altmetric
?
?
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHartnett, J.-
dc.contributor.authorNand, N.-
dc.date.issued2010-
dc.identifier.citationIEEE Transactions on Microwave Theory and Techniques, 2010; 58(12):3580-3586-
dc.identifier.issn0018-9480-
dc.identifier.issn1557-9670-
dc.identifier.urihttp://hdl.handle.net/2440/88046-
dc.description.abstractA low maintenance long-term operational cryogenic sapphire oscillator has been implemented at 11.2 GHz using an ultra-low-vibration cryostat and pulse-tube cryocooler. It is currently the world's most stable microwave oscillator employing a cryocooler. Its performance is explained in terms of temperature and frequency stability. The phase noise and the Allan deviation of frequency fluctuations have been evaluated by comparing it to an ultra-stable liquid-helium cooled cryogenic sapphire oscillator in the same laboratory. Assuming both contribute equally, the Allan deviation evaluated for the cryocooled oscillator is σy ≈ 1 × 10-15τ-1/2 for integration times 1 <; τ <; 10 s with a minimum σy = 3.9 × 10-16 at τ = 20 s. The long term frequency drift is less than 5×10-14/day. From the measured power spectral density of phase fluctuations, the single-sideband phase noise can be represented by Lφ(f) = 10-14.0/f4+10-11.6/f3+10-10.0/f2+10-10.2/f+ 10-11.0 rad2/Hz for Fourier frequencies 10-3 <; f <; 103 Hz in the single oscillator. As a result, Lφ ≈ -97.5 dBc/Hz at 1-Hz offset from the carrier.-
dc.description.statementofresponsibilityJohn G. Hartnett and Nitin R. Nand-
dc.language.isoen-
dc.publisherIEEE-
dc.rights© 2010 IEEE-
dc.subjectCryocooler-
dc.subjectcryogenic sapphire oscillator-
dc.subjectfrequency stability-
dc.subjectphase noise-
dc.titleUltra-low vibration pulse-tube cryocooler stabilized cryogenic sapphire oscillator with 10⁻¹⁶ fractional frequency stability-
dc.title.alternativeUltra-low vibration pulse-tube cryocooler stabilized cryogenic sapphire oscillator with 10(-16) fractional frequency stability-
dc.typeJournal article-
dc.identifier.doi10.1109/TMTT.2010.2086551-
pubs.publication-statusPublished-
Appears in Collections:Aurora harvest 7
Physics publications

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.