Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/94234
Citations
Scopus Web of Science® Altmetric
?
?
Full metadata record
DC FieldValueLanguage
dc.contributor.authorNemati, M.-
dc.contributor.authorSantos, A.-
dc.contributor.authorKumeria, T.-
dc.contributor.authorLosic, D.-
dc.date.issued2015-
dc.identifier.citationAnalytical Chemistry, 2015; 87(17):9016-9024-
dc.identifier.issn0003-2700-
dc.identifier.issn1520-6882-
dc.identifier.urihttp://hdl.handle.net/2440/94234-
dc.description.abstractHerein, we present an interferometric sensor based on the combination of chemically functionalized nanoporous anodic alumina photonic films (NAA-PFs) and reflectometric interference spectroscopy (RIfS) aimed to detect trace levels of enzymes by selective digestion of gelatin. The fabrication and sensing performance of the proposed sensor were characterized in real-time by estimating the changes in effective optical thickness (i.e., sensing principle) of gelatin-modified NAA-PFs (i.e., sensing element) during enzymatic digestion. The working range (WR), sensitivity (S), low limit of detection (LLoD), and linearity (R(2)) of this enzymatic sensor were established by a series of experiments with different concentrations of gelatin (i.e., specific chemical sensing element) and trypsin (i.e., analyte), a model protease enzyme with relevant implications as a biomarker in the diagnosis of several diseases. The chemical selectivity of the sensor was demonstrated by comparison of gelatin digestion by other nonspecific enzyme models such as chymotrypsin and horseradish peroxidase. Furthermore, the role of the chemical sensing element (i.e., gelatin) was assessed by using hemoglobin instead of gelatin. Finally, we demonstrated that this sensor can be readily used to establish the kinetic parameters of enzymatic reactions. The obtained results revealed that the presented sensor has a promising potential to be used as a point-of-care system for fast detection of gastrointestinal diseases at early stages.-
dc.description.statementofresponsibilityMahdieh Nemati, Abel Santos, Tushar Kumeria, and Dusan Losic-
dc.language.isoen-
dc.publisherAmerican Chemical Society-
dc.rights© 2015 American Chemical Society-
dc.source.urihttp://dx.doi.org/10.1021/acs.analchem.5b02225-
dc.subjectAluminum Oxide-
dc.subjectTrypsin-
dc.subjectGelatin-
dc.subjectInterferometry-
dc.subjectElectrodes-
dc.subjectParticle Size-
dc.subjectSurface Properties-
dc.subjectPhotons-
dc.subjectPorosity-
dc.subjectTime Factors-
dc.subjectNanostructures-
dc.titleLabel-free real-time quantification of enzyme levels by interferometric spectroscopy combined with gelatin-modified nanoporous anodic alumina photonic films-
dc.typeJournal article-
dc.identifier.doi10.1021/acs.analchem.5b02225-
dc.relation.granthttp://purl.org/au-research/grants/arc/DE140100549-
dc.relation.granthttp://purl.org/au-research/grants/arc/DP120101680-
dc.relation.granthttp://purl.org/au-research/grants/arc/FT110100711-
pubs.publication-statusPublished-
dc.identifier.orcidSantos, A. [0000-0002-5081-5684]-
dc.identifier.orcidLosic, D. [0000-0002-1930-072X]-
Appears in Collections:Aurora harvest 2
Chemical Engineering publications

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.