Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/94310
Citations
Scopus Web of Science® Altmetric
?
?
Type: Journal article
Title: Visualization of micro-particle retention on a heterogeneous surface using micro-models: influence of nanoscale surface roughness
Author: Argent, J.
Torkzaban, S.
Hubbard, S.
Le, H.
Amirianshoja, T.
Haghighi, M.
Citation: Transport in Porous Media, 2015; 109(2):239-253
Publisher: Springer
Issue Date: 2015
ISSN: 0169-3913
1573-1634
Statement of
Responsibility: 
Joel Argent, Saeed Torkzaban, Stephen Hubbard, Helen Le, Tahmineh Amirianshoja, Manouchehr Haghighi
Abstract: Nanoscale surface roughness and charge heterogeneity have been widely recognized to influence particle retention in porous media under unfavourable chemical conditions such as solutions of low ionic strength (IS) or high pH. However, previous researches have not appreciated the influence of nanoscale surface roughness on particle retention under favourable chemical conditions (e.g. high solution IS). This information is needed to better understand and predict particle transport and retention in such natural environments, such as enhanced oil recovery in a high-salinity reservoir. A glass-etched micro-model was employed to directly visualize retention of micro-sized particles and their spatial distribution on the glass surface under various chemical conditions. The extended DLVO calculations accounting for the effect of nanoscale surface roughness on the interaction energies were employed to quantitatively evaluate the experimental results. It was shown that nanoscale roughness on solid surfaces significantly reduced the strength of primary minimum attachment when the solution IS was high. In particular, increasing the density of roughness on the solid surface increased the strength of primary minimum, whereas increasing the roughness height decreased the strength of primary minimum interaction. Consequently, retained particles in the primary minimum are expected to be susceptible to detachment via hydrodynamic drag forces and movement of air–water interfaces during transient in water saturation (e.g. drainage or imbibition). Indeed, results obtained from the micro-model experiments demonstrated that only a fraction of solid surface was available for particle retention even at a very high IS of 0.6 M.
Keywords: Transport; deposition; micro-sized particles; micro-model; surface roughness
Rights: © Springer Science+Business Media Dordrecht 2015
DOI: 10.1007/s11242-015-0511-z
Published version: http://dx.doi.org/10.1007/s11242-015-0511-z
Appears in Collections:Aurora harvest 7
Australian School of Petroleum publications

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.