Please use this identifier to cite or link to this item:
Scopus Web of Science® Altmetric
Full metadata record
DC FieldValueLanguage
dc.contributor.authorWang, X.-
dc.contributor.authorWei, D.-
dc.contributor.authorMa, Y.-
dc.contributor.authorMcLaughlin, M.-
dc.contributor.editorYan, Z.-
dc.identifier.citationPLoS One, 2015; 10(7):e0133941-1-e0133941-15-
dc.description.abstractConsiderable information on copper (Cu) ecotoxicity as affected by biological species and abiotic properties of soils has been collected from the last decade in the present study. The information on bioavailability/ecotoxicity, species sensitivity and differences in laboratory and field ecotoxicity of Cu in different soils was collated and integrated to derive soil ecological criteria for Cu in Chinese soils, which were expressed as predicted no effect concentrations (PNEC). First, all ecotoxicity data of Cu from bioassays based on Chinese soils were collected and screened with given criteria to compile a database. Second, the compiled data were corrected with leaching and aging factors to minimize the differences between laboratory and field conditions. Before Cu ecotoxicity data were entered into a species sensitivity distribution (SSD), they were normalized with Cu ecotoxicity predictive models to modify the effects of soil properties on Cu ecotoxicity. The PNEC value was set equal to the hazardous concentration for x% of the species (HCx), which could be calculated from the SSD curves, without an additional assessment factor. Finally, predictive models for HCx based on soil properties were developed. The soil properties had a significant effect on the magnitude of HCx, with HC5 varying from 13.1 mg/kg in acidic soils to 51.9 mg/kg in alkaline non-calcareous soils. The two-factor predictive models based on soil pH and cation exchange capacity could predict HCx with determination coefficients (R2) of 0.82-0.91. The three-factor predictive models - that took into account the effect of soil organic carbon - were more accurate than two-factor models, with R2 of 0.85-0.99. The predictive models obtained here could be used to calculate soil-specific criteria. All results obtained here could provide a scientific basis for revision of current Chinese soil environmental quality standards, and the approach adopted in this study could be used as a pragmatic framework for developing soil ecological criteria for other trace elements in soils.-
dc.description.statementofresponsibilityXiaoqing Wang, Dongpu Wei, Yibing Ma, Mike J. McLaughlin-
dc.publisherPublic Library of Science-
dc.rights© 2015 Wang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited-
dc.subjectSoil Pollutants-
dc.titleDerivation of soil ecological criteria for copper in Chinese soils-
dc.typeJournal article-
dc.identifier.orcidMcLaughlin, M. [0000-0001-6796-4144]-
Appears in Collections:Agriculture, Food and Wine publications
Aurora harvest 3

Files in This Item:
File Description SizeFormat 
hdl_94667.pdfPublished version1.45 MBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.