Please use this identifier to cite or link to this item:
Scopus Web of Science® Altmetric
Type: Journal article
Title: Reflection and transmission coefficients for an incident plane shear wave at an interface separating two dissimilar poroelastic solids
Author: Liu, X.
Greenhalgh, S.
Citation: Pure and Applied Geophysics, 2014; 171(9):2111-2127
Publisher: Springer
Issue Date: 2014
ISSN: 0033-4553
Statement of
Xu Liu and Stewart Greenhalgh
Abstract: Using Biot’s poroelasticity theory, we derive expressions for the reflection and transmission coefficients for a plane shear wave incident on an interface separating two different poroelastic solids. The coefficients are formulated as a function of the wave incidence angle, frequency and rock properties. Specific cases calculated include the boundary between water-saturated sand and water-saturated sandstone and the gas–water interface in sand. The results show a very different interface response to that of an incident P wave. Plane SV wave incidence does not significantly excite the Biot slow P wave if the frequency of the wave is below the transition frequency. Above this frequency, an incident plane SV wave can generate a mode-converted slow Biot P wave which is actually a normal propagating wave and not highly attenuating as in the usual (diffusive) case. For an incident SV wave onto a gas– water interface, even at very high frequency, there is no significant Biot second P wave produced. For small incident angles, the gas– water interface is essentially transparent. With increasing angles, there can arise an unusual ‘‘definitive angle’’ in the reflection/ transmission coefficient curves which is related to the change of fluid viscosity on both sides of the interface and provides a possible new means for underground fluid assessment.
Keywords: Poroelastic media; reflection and transmission coefficients
Rights: © 2014 Springer Basel
DOI: 10.1007/s00024-014-0844-5
Grant ID: ARC
Appears in Collections:Aurora harvest 7
Physics publications

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.