Please use this identifier to cite or link to this item:
Scopus Web of Science® Altmetric
Type: Journal article
Title: Evolution of Antarctic ozone in September-December predicted by CCMVal-2 model simulations for the 21st century
Author: Siddaway, J.
Petelina, S.
Karoly, D.
Klekociuk, A.
Dargaville, R.
Citation: Atmospheric Chemistry and Physics, 2013; 13(8):4413-4427
Publisher: European Geosciences Union (EGU)
Issue Date: 2013
ISSN: 1680-7316
Statement of
J. M. Siddaway, S. V. Petelina, D. J. Karoly, A. R. Klekociuk, and R. J. Dargaville
Abstract: Chemistry-Climate Model Validation phase 2 (CCMVal-2) model simulations are used to analyze Antarctic ozone increases in 2000–2100 during local spring and early summer, both vertically integrated and at several pressure levels in the lower stratosphere. Multi-model median trends of monthly zonal mean total ozone column (TOC), ozone volume mixing ratio (VMR), wind speed and temperature poleward of 60° S are investigated. Median values are used to account for large variability in models, and the associated uncertainty is calculated using a bootstrapping technique. According to the trend derived from the twelve CCMVal-2 models selected, Antarctic TOC will not return to a 1965 baseline, an average of 1960–1969 values, by the end of the 21st century in September–November, but will return in ~2080 in December. The speed of December ozone depletion before 2000 was slower compared to spring months, and thus the decadal rate of December TOC increase after 2000 is also slower. Projected trends in December ozone VMR at 20–100 hPa show a much slower rate of ozone recovery, particularly at 50–70 hPa, than for spring months. Trends in temperature and winds at 20–150 hPa are also analyzed in order to attribute the projected slow increase of December ozone and to investigate future changes in the Antarctic atmosphere in general, including some aspects of the polar vortex breakup.
Rights: © Author(s) 2013. This work is distributed under the Creative Commons Attribution 3.0 License.
DOI: 10.5194/acp-13-4413-2013
Appears in Collections:Aurora harvest 7
Physics publications

Files in This Item:
File Description SizeFormat 
hdl_96009.pdfPublished version1.19 MBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.