Please use this identifier to cite or link to this item: http://hdl.handle.net/2440/97727
Citations
Scopus Web of Science® Altmetric
?
?
Type: Journal article
Title: Relevance of global forest change data set to local conservation: case study of forest degradation in Masoala National Park, Madagascar
Author: Burivalova, Z.
Bauert, M.R.
Hassold, S.
Fatroandrianjafinonjasolomiovazo, N.T.
Koh, L.P.
Citation: Biotropica, 2015; 47(2):267-274
Publisher: Wiley
Issue Date: 2015
ISSN: 0006-3606
1744-7429
Statement of
Responsibility: 
Zuzana Burivalova, Martin R. Bauert, Sonja Hassold, Nandinanjakana T. Fatroandrianjafinonjasolomiovazo, and Lian Pin Koh
Abstract: A global data set on forest cover change was recently published and made freely available for use (Hansen et al. 2013. Science 342: 850–853). Although this data set has been criticized for inaccuracies in distinguishing vegetation types at the local scale, it remains a valuable source of forest cover information for areas where local data is severely lacking. Masoala National Park, in northeastern Madagascar, is an example of a region for which very little spatially explicit forest cover information is available. Yet, this extremely diverse tropical humid forest is undergoing a dramatic rate of forest degradation and deforestation through illegal selective logging of rosewood and ebony, slash-and-burn agriculture, and damage due to cyclones. All of these processes result in relatively diffuse and small-scale changes in forest cover. In this paper, we examine to what extent Hansen et al.'s global forest change data set captures forest loss within Masoala National Park by comparing its performance to a locally calibrated, object-oriented classification approach. We verify both types of classification with substantial ground truthing. We find that both the global and local classifications perform reasonably well in detecting small-scale slash-and-burn agriculture, but neither performs adequately in detecting selective logging. We conclude that since the use of the global forest change data set requires very little technical and financial investment, and performs almost as well as the more resource-demanding, locally calibrated classification, it may be advantageous to use the global forest change data set even for local conservation purposes.
Keywords: cyclone; Geographic Information System; object-oriented classification; selective logging; slash-and-burn agriculture; tropical forest
Description: Article first published online: 13 FEB 2015
Rights: © 2015 The Association for Tropical Biology and Conservation
RMID: 0030025435
DOI: 10.1111/btp.12194
Appears in Collections:Earth and Environmental Sciences publications

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.