Please use this identifier to cite or link to this item:
Scopus Web of ScienceĀ® Altmetric
Type: Journal article
Title: Visualization of labile zinc and its role in apoptosis of primary airway epithelial cells and cell lines
Author: TruongTran, A.
Ruffin, R.
Zalewski, P.
Citation: American Journal of Physiology-Lung Cellular and Molecular Physiology, 2000; 279(6 23-6):L1172-L1183
Publisher: Amer Physiological Soc
Issue Date: 2000
ISSN: 1040-0605
Abstract: The respiratory epithelium is vulnerable to noxious substances, resulting in the shedding of cells and decreased protection. Zinc (Zn), an antioxidant and cytoprotectant, can suppress apoptosis in a variety of cells. Here we used the novel Zn-specific fluorophore Zinquin to visualize and quantify labile intracellular Zn in respiratory epithelial cells. Zinquin fluorescence in isolated ciliated tracheobronchial epithelial cells and intact epithelium from sheep and pigs revealed an intense fluorescence in the apical and mitochondria-rich cytoplasm below the cilia. Zinquin fluorescence was quenched by the Zn chelator N,N,N', N'-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN) and increased by the Zn ionophore pyrithione. We also assessed whether changes in intracellular labile Zn would influence susceptibility of these cells to apoptosis by hydrogen peroxide. Our results confirm that Zn deficiency enhanced hydrogen peroxide-induced caspase activation from 1.24 +/- 0.12 to 2.58 +/- 0.53 units. microg protein(-1). h(-1) (P </= 0.05); Zn supplementation suppressed these effects. These findings are consistent with the hypothesis that Zn protects upper respiratory epithelial cells and may have implications for human asthma where there is hypozincemia and epithelial damage.
Keywords: Bronchi; Pulmonary Alveoli; Respiratory Mucosa; Trachea; Tumor Cells, Cultured; Epithelial Cells; Animals; Sheep; Swine; Humans; Adenocarcinoma, Bronchiolo-Alveolar; Lung Neoplasms; Hydrogen Peroxide; Zinc; Ethylenediamines; Butyrates; Tosyl Compounds; Coumarins; Quinolones; Caspases; Oligopeptides; Chelating Agents; Fluorescent Dyes; Oxidants; Microscopy, Electron; Microscopy, Fluorescence; Apoptosis; Enzyme Activation; Drug Synergism; Caspase 3
RMID: 0001000157
DOI: 10.1152/ajplung.2000.279.6.l1172
Appears in Collections:Medicine publications

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.