Please use this identifier to cite or link to this item:
Scopus Web of Science® Altmetric
Type: Journal article
Title: Gravitational extension of a fluid cylinder with internal structure
Author: Tronnolone, H.
Stokes, Y.
Foo, H.
Ebendorff-Heidepriem, H.
Citation: Journal of Fluid Mechanics, 2016; 790:308-338
Publisher: Cambridge University Press
Issue Date: 2016
ISSN: 0022-1120
Statement of
Hayden Tronnolone, Yvonne M. Stokes, Herbert Tze Cheung Foo and Heike Ebendorff-Heidepriem
Abstract: Motivated by the fabrication of microstructured optical fibres, a model is presented for the extension under gravity of a slender fluid cylinder with internal structure. It is shown that the general problem decouples into a two-dimensional surface-tension-driven Stokes flow that governs the transverse shape and an axial problem that depends upon the transverse flow. The problem and its solution differ from those obtained for fibre drawing, because the problem is unsteady and the fibre tension depends on axial position. Solutions both with and without surface tension are developed and compared, which show that the relative importance of surface tension depends upon both the parameter values and the geometry under consideration. The model is compared with experimental data and is shown to be in good agreement. These results also show that surface-tension effects are essential to accurately describing the cross-sectional shape.
Keywords: interfacial flows (free surface); low-Reynolds-number flows; slender-body theory
Description: First published online 3 February 2016
Rights: © Cambridge University Press 2016
DOI: 10.1017/jfm.2016.11
Grant ID:
Appears in Collections:Aurora harvest 3
Physics publications

Files in This Item:
File Description SizeFormat 
hdl_99215.pdfAccepted version2.37 MBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.