Please use this identifier to cite or link to this item:
Scopus Web of Science® Altmetric
Type: Journal article
Title: Absolute neighbourhood retracts and spaces of holomorphic maps from stein manifolds to oka manifolds
Author: Lárusson, F.
Citation: Proceedings of the American Mathematical Society, 2015; 143(3):1159-1167
Publisher: American Mathematical Society
Issue Date: 2015
ISSN: 0002-9939
Statement of
Finnur Lárusson
Abstract: The basic result of Oka theory, due to Gromov, states that every continuous map f from a Stein manifold S to an elliptic manifold X can be deformed to a holomorphic map. It is natural to ask whether this can be done for all f at once, in a way that depends continuously on f and leaves f fixed if it is holomorphic to begin with. In other words, is O(S, X) a deformation retract of C(S, X)? We prove that it is if S has a strictly plurisubharmonic Morse exhaustion with finitely many critical points, in particular, if S is affine algebraic. The only property of X used in the proof is the parametric Oka property with approximation with respect to finite polyhedra, so our theorem holds under the weaker assumption that X is an Oka manifold. Our main tool, apart from Oka theory itself, is the theory of absolute neighbourhood retracts. We also make use of the mixed model structure on the category of topological spaces.
Keywords: Stein manifold; Oka manifold; Parametric Oka property; Deformation Retract; Absolute neighbourhood retract; Mixed model structure
Rights: © 2014 American Mathematical Society. Reverts to public domain 28 years from publication
DOI: 10.1090/S0002-9939-2014-12335-5
Grant ID:
Published version:
Appears in Collections:Aurora harvest 7
Mathematical Sciences publications

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.