Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/99383
Citations
Scopus Web of Science® Altmetric
?
?
Full metadata record
DC FieldValueLanguage
dc.contributor.authorXu, J.-
dc.contributor.authorHu, W.-
dc.contributor.authorXu, S.-
dc.contributor.authorMunroe, P.-
dc.contributor.authorXie, Z.-
dc.date.issued2016-
dc.identifier.citationACS Biomaterials Science and Engineering, 2016; 2(1):73-89-
dc.identifier.issn2373-9878-
dc.identifier.issn2373-9878-
dc.identifier.urihttp://hdl.handle.net/2440/99383-
dc.descriptionPublished: November 30, 2015-
dc.description.abstractTo enhance the corrosion resistance, biocompatibility and mechanical durability of biomedical titanium alloys, a novel β-Ta2O5 nanoceramic coating was developed using a double glow discharge plasma technique. The surface morphology, phase composition and microstructure of the as-deposited coating were examined by atomic force microscopy (AFM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The coating exhibits a striated structural pattern along the growth direction, which consists of equiaxed β-Ta2O5 grains, 15–20 nm in diameter in cross-section, showing a strong (001) preferred orientation. The mechanical properties and contact damage resistance of the β-Ta2O5 coating were evaluated by nanoindentation. Additionally, scratch tests were performed to evaluate the adhesion strength between the β-Ta2O5 coating and the Ti-6Al-4V substrate. The β-Ta2O5 coating shows high hardness combined with good resistance to both indentation and scratch damage, thus favoring it for long-term load-bearing application in the human body. Electrochemical behavior of the coating was analyzed in both a 0.9 wt % NaCl solution and Ringer’s solution at 37 °C, by various electrochemical analytical techniques, including potentiodynamic polarization, electrochemical impedance spectroscopy, potential of zero charge and Mott–Schottky analysis. Compared with uncoated Ti-6Al-4V and commercially pure tantalum, the β-Ta2O5 coating possesses a more positive Ecorr and lower icorr in both aqueous solutions, which is attributed to the thicker and denser β-Ta2O5 coating that provides more effective protection against corrosive attack. In addition, the β-Ta2O5 coating shows stable impedance behavior over 5 days immersion under both simulated body solutions, corroborated by the capacitance and resistance values extracted from the EIS data. Mott–Schottky analysis reveals that the β-Ta2O5 coating shows n-type semiconductor behavior and its donor density is independent of immersion time in both aqueous solutions. Its donor density is of the order of 1 × 1019 cm–3, which is an order of magnitude less than that of the passive films formed on either commercially pure Ta or uncoated Ti-6Al-4V. Moreover, according to the differences between corrosion potential and potential of zero charge, the β-Ta2O5 coating exhibits a greater propensity to repulse chloride ions than both commercially pure Ta and uncoated Ti-6Al-4V. Therefore, the newly developed coating could be used to protect the surface of biomedical titanium alloys under harsh conditions.-
dc.description.statementofresponsibilityJiang Xu, Wei Hu, Song Xu, Paul Munroe, and Zong-Han Xie-
dc.language.isoen-
dc.publisherAmerican Chemical Society-
dc.rights© 2015 American Chemical Society-
dc.source.urihttp://dx.doi.org/10.1021/acsbiomaterials.5b00384-
dc.subjecttantalum pentoxide; biomedical titanium alloy; corrosion behavior; simulated body solutions; EIS-
dc.titleElectrochemical properties of a novel β-Ta₂O₅ nanoceramic coating exposed to simulated body solutions-
dc.title.alternativeElectrochemical properties of a novel beta-Ta(2)O(5) nanoceramic coating exposed to simulated body solutions-
dc.typeJournal article-
dc.identifier.doi10.1021/acsbiomaterials.5b00384-
dc.relation.granthttp://purl.org/au-research/grants/arc/DP150102417-
pubs.publication-statusPublished-
Appears in Collections:Aurora harvest 3
Mechanical Engineering publications

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.