Learning Informative Latent Representation for Quantum State Tomography
Date
2025
Authors
Ma, H.
Sun, Z.
Dong, D.
Gong, D.
Editors
Advisors
Journal Title
Journal ISSN
Volume Title
Type:
Journal article
Citation
IEEE Transactions on Emerging Topics in Computational Intelligence, 2025; 1-11
Statement of Responsibility
Hailan Ma, Zhenhong Sun, Daoyi Dong, and Dong Gong
Conference Name
Abstract
Quantum state tomography (QST) is the process of reconstructing the complete state of a quantum system (mathematically described as a density matrix) through a series of different measurements.These measurements are performed on a number of identical copies of the quantum system, with outcomes gathered as probabilities/frequencies. QST aims to recover the density matrix and the corresponding properties of the quantum state from the measured frequencies. Although an informationally complete set of measurements can specify the quantum state accurately in an ideal scenario with a large number of identical copies, both the measurements and identical copies are restricted and imperfect in practical scenarios, making QST highly ill-posed. The conventionalQSTmethods usually assume adequate or accurate measured frequencies or rely on manually designed regularizers to handle the ill-posed reconstruction problem, suffering from limited applications in realistic scenarios. Recent advances in deep neural networks (DNNs) led to the emergence of deep learning (DL) in QST. However, existing DL-based QST approaches often employ genericDNNmodels that are not optimized for imperfect conditions of QST. In this paper, we propose a transformer-based autoencoder architecture tailored for QST with imperfect measurement data. Our method leverages a transformer-based encoder to extract an informative latent representation (ILR) from imperfect measurement data and employs a decoder to predict the quantum states based on the ILR. We anticipate that the high-dimensional ILR will capture more comprehensive information about the quantum states. To achieve this, we conduct pre-training of the encoder using a pretext task that involves reconstructing high-quality frequencies from measured frequencies. Extensive simulations and experiments demonstrate the remarkable ability of the informative latent representation to deal with imperfect measurement data in QST.
School/Discipline
Dissertation Note
Provenance
Description
OnlinePubl.
Available online 7 March 2025
Access Status
Rights
© 2025 IEEE. All rights reserved, including rights for text and data mining, and training of artificial intelligence and similar technologies. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.