Cell Line-Dependent Internalization, Persistence, and Immunomodulatory Effects of Staphylococcus aureus in Triple-Negative Breast Cancer
Files
(Published version)
Date
2025
Authors
Rad, S.K.
Li, R.
Yeo, K.K.L.
Cooksley, C.
Shaghayegh, G.
Vreugde, S.
Wu, F.
Tomita, Y.
Price, T.J.
Ingman, W.V.
Editors
Advisors
Journal Title
Journal ISSN
Volume Title
Type:
Journal article
Citation
Cancers, 2025; 17(18):2947-1-2947-25
Statement of Responsibility
Sima Kianpour Rad, Runhao Li, Kenny K. L. Yeo, Clare Cooksley, Gohar Shaghayegh, Sarah Vreugde, Fangmeinuo Wu, Yoko Tomita, Timothy J. Price, Wendy V. Ingman, Amanda R. Townsend, and Eric Smith
Conference Name
Abstract
Background: Triple-negative breast cancer (TNBC) is an aggressive subtype with limited therapeutic options and inconsistent response to immune checkpoint inhibitors (ICIs). Emerging evidence indicates that tumor-associated bacteria may shape immune signaling and alter immunotherapy outcomes. Here, we investigated whether Staphylococcus aureus invades TNBC cells, persists intracellularly, and modulates PD-L1 expression. Methods: Using eFluor450-labeled S. aureus for flow cytometry, gentamicin protection assays, CFU quantification, and transmission electron microscopy, we assessed bacterial uptake and persistence in six TNBC cell lines and a non-tumorigenic control. PD-L1, TLR2, and STAT1 activation were evaluated after infection or TLR2 ligand treatment ± IFN-γ . Results: At multiplicity of infection (MOI) of 10, S. aureus internalized into 67% of MDA-MB-468 and 54% of MDA-MB-231, with intermediate uptake in Hs578T (27%) and BT-549 (24%) and only 0.5–9% in low-uptake lines (MDA-MB-453, CAL-51, MCF-12A). High-uptake lines exhibited marked cytotoxicity and reduced proliferation, with MDA-MB-468 showing an 82% drop in viability at 2 h and a 74% decrease after 5 d, whereas low-uptake lines showed minimal impact. Persistence lasted >7 d in MDA-MB-231 but only 3–5 days in others. IFN- plus S. aureus significantly amplified PD-L1, with up to a 2.9-fold increase in MDA-MB-468 and 1.5-fold in MDA-MB-231, but no effect in low-uptake lines. TLR2 agonists modestly increased PD-L1 in high-TLR2-expressing lines and synergized with IFN-γ . These effects were accompanied by STAT1 phosphorylation, supporting a TLR2/STAT1 axis linking bacterial sensing to immune checkpoint regulation. Conclusions: Together, these findings identify S. aureus as a modulator of immune signaling in TNBC and highlight the potential for microbial factors to influence ICI responsiveness. Targeting tumor–bacteria interactions may represent a novel strategy to enhance immunotherapy efficacy in breast cancer
School/Discipline
Dissertation Note
Provenance
Description
Access Status
Rights
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/ licenses/by/4.0/).