Bandwidth Selection in Nonparametric Kernel Testing
Date
2008
Authors
Gao, J.
Gijbels, I.
Editors
Advisors
Journal Title
Journal ISSN
Volume Title
Type:
Journal article
Citation
Journal of the American Statistical Association, 2008; 103(484):1584-1594
Statement of Responsibility
Jiti Gao and Irène Gijbels
Conference Name
Abstract
We propose a sound approach to bandwidth selection in nonparametric kernel testing. The main idea is to find an Edgeworth expansion of the asymptotic distribution of the test concerned. Due to the involvement of a kernel bandwidth in the leading term of the Edgeworth expansion, we are able to establish closed-form expressions to explicitly represent the leading terms of both the size and power functions and then determine how the bandwidth should be chosen according to certain requirements for both the size and power functions. For example, when a significance level is given, we can choose the bandwidth such that the power function is maximized while the size function is controlled by the significance level. Both asymptotic theory and methodology are established. In addition, we develop an easy implementation procedure for the practical realization of the established methodology and illustrate this on two simulated examples and a real data example.