Splittings for C* -correspondences and strong shift equivalence
| dc.contributor.author | Brix, K.A. | |
| dc.contributor.author | Mundey, A. | |
| dc.contributor.author | Rennie, A. | |
| dc.date.issued | 2024 | |
| dc.description.abstract | We present an extension of the notion of in-splits from symbolic dynamics to topological graphs and, more generally, to C* -correspondences. We demonstrate that in-splits provide examples of strong shift equivalences of C* -correspondences. Furthermore, we provide a streamlined treatment of Muhly, Pask, and Tomforde's proof that any strong shift equivalence of regular C* -correspondences induces a (gauge-equivariant) Morita equivalence between Cuntz-Pimsner algebras. For topological graphs, we prove that in-splits induce diagonal-preserving gauge-equivariant ∗-isomorphisms in analogy with the results for Cuntz-Krieger algebras. Additionally, we examine the notion of out-splits for C* -correspondences. | |
| dc.description.statementofresponsibility | Kevin Aguyar Brix, Alexander Mundey, Adam Rennie | |
| dc.identifier.citation | Mathematica Scandinavica, 2024; 130(1):101-148 | |
| dc.identifier.doi | 10.7146/math.scand.a-142308 | |
| dc.identifier.issn | 0025-5521 | |
| dc.identifier.issn | 1903-1807 | |
| dc.identifier.orcid | Mundey, A. [0000-0002-7791-4383] | |
| dc.identifier.uri | https://hdl.handle.net/2440/148001 | |
| dc.language.iso | en | |
| dc.publisher | Mathematica Scandinavica | |
| dc.relation.grant | http://purl.org/au-research/grants/arc/DP200100155 | |
| dc.rights | © 2024 Mathematica Scandinavica | |
| dc.source.uri | https://doi.org/10.7146/math.scand.a-142308 | |
| dc.title | Splittings for C* -correspondences and strong shift equivalence | |
| dc.type | Journal article | |
| pubs.publication-status | Published |