Terahertz localized surface plasmon resonances in coaxial microcavities

dc.contributor.authorWithayachumnankul, W.
dc.contributor.authorShah, C.
dc.contributor.authorFumeaux, C.
dc.contributor.authorKaltenecker, K.
dc.contributor.authorWalther, M.
dc.contributor.authorFischer, B.
dc.contributor.authorAbbott, D.
dc.contributor.authorBhaskaran, M.
dc.contributor.authorSriram, S.
dc.date.issued2013
dc.description.abstractCoaxial microcavities etched into the surface of a doped silicon substrate are shown to support localized surface plasmon resonances at terahertz frequencies. The underlying mechanism involves coupling freely propagating terahertz waves with surface plasmon polaritons (SPPs), which propagate in a coaxial mode along the cavity walls in the axial direction. A Fabry-Pérot resonance is built up when the SPP wavenumber appropriately relates to the cavity depth. Owing to the Ohmic loss of the silicon at terahertz frequencies, the energy of the resonating SPPs is largely dissipated, leading to a modified reflection spectrum. Strong field enhancement is observed inside the cavities at resonance. The theoretical analysis is supported by numerical and experimental results. This study is a promising pathway for development of terahertz devices with applications in the areas of photonic integrated circuits, molecular sensing, and subwavelength imaging. Coaxial microcavities etched into the surface of a doped silicon substrate are shown to support localized surface plasmon resonances at terahertz frequencies. This provides a promising pathway for the development of terahertz devices with application in the areas of photonic integrated circuits, molecular sensing, and subwavelength imaging. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
dc.description.statementofresponsibilityWithawat Withayachumnankul, Charan Manish Shah, Christophe Fumeaux, Korbinian Kaltenecker, Markus Walther, Bernd M. Fischer, Derek Abbott, Madhu Bhaskaran, and Sharath Sriram
dc.identifier.citationAdvanced Optical Materials, 2013; 1(6):443-448
dc.identifier.doi10.1002/adom.201300021
dc.identifier.issn2195-1071
dc.identifier.issn2195-1071
dc.identifier.orcidWithayachumnankul, W. [0000-0003-1155-567X]
dc.identifier.orcidFumeaux, C. [0000-0001-6831-7213]
dc.identifier.orcidAbbott, D. [0000-0002-0945-2674]
dc.identifier.urihttp://hdl.handle.net/2440/81613
dc.language.isoen
dc.publisherWiley - V C H Verlag GmbH & Co. KGaA
dc.relation.granthttp://purl.org/au-research/grants/arc/DP1095151
dc.relation.granthttp://purl.org/au-research/grants/arc/DP1092717
dc.relation.granthttp://purl.org/au-research/grants/arc/DP110100262
dc.rights© 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
dc.source.urihttps://doi.org/10.1002/adom.201300021
dc.subjectplasmonics
dc.subjectlocalized surface plasmon resonances
dc.subjectterahertz waves
dc.subjectmetamaterials
dc.subjectcoaxial cavities
dc.titleTerahertz localized surface plasmon resonances in coaxial microcavities
dc.typeJournal article
pubs.publication-statusPublished

Files