Use of recurrent neural networks and hybrid evolutionary algorithms for the prediction of phytoplankton abundance and succession before and after eutrophication control of two shallow lakes

dc.contributor.authorTalib, A.
dc.contributor.authorRecknagel, F.
dc.contributor.authorCao, H.
dc.contributor.authorvan der Molen, D.
dc.contributor.conferenceInternational Congress on Modelling and Simulation (16th : 2005 : Melbourne, Victoria)
dc.contributor.editorZerger, A.
dc.contributor.editorArgent, R.
dc.date.issued2005
dc.identifier.citationProceedings of the international congress on modelling and simulation, 12 December, 2005
dc.identifier.isbn0975840002
dc.identifier.orcidRecknagel, F. [0000-0002-1028-9413]
dc.identifier.urihttp://hdl.handle.net/2440/28311
dc.language.isoen
dc.publisherModelling & Simulation Society of Australia & New Zealand Inc.
dc.publisher.placehttp://mssanz.org.au/modsim05/papers/talib.pdf
dc.titleUse of recurrent neural networks and hybrid evolutionary algorithms for the prediction of phytoplankton abundance and succession before and after eutrophication control of two shallow lakes
dc.typeConference paper
pubs.publication-statusPublished

Files