Single-Atom Copper@Carbon Nanospheres for Catalytic Ozonation: Parallel Dual Surface Oxidation Pathways for Broad-Spectrum Water Pollutant Removal.

Date

2025

Authors

Cheng, Y.
Zhou, J.
Chen, Z.
Bi, J.
Ren, S.
Zhong, S.
Yan, P.
Li, Y.
Wang, S.
Duan, X.

Editors

Advisors

Journal Title

Journal ISSN

Volume Title

Type:

Journal article

Citation

Environmental Science and Technology, 2025; 59(40):21738-21748

Statement of Responsibility

Yizhen Cheng, Jianshu Zhou, Zhonglin Chen, Jinhong Bi, Shiying Ren, Shuang Zhong, Pengwei Yan, Yabin Li, Shaobin Wang, and Xiaoguang Duan

Conference Name

Abstract

Heterogeneous catalytic ozonation (HCO) is a promising strategy for removing organic pollutants from wastewater, but its practical deployment is limited by the scavenging effects of coexisting constituents (e.g., inorganic anions and humic acids) on hydroxyl radicals (•OH). Herein, we developed atomically dispersed single-atom copper@carbon nanospheres (Cu-NC-3), which effectively decompose ozone (O₃) to generate surface atomic oxygen (*O), as confirmed by the in situ Raman experiments and theoretical calculations. The *O species rapidly degrade 60% of oxalic acid (OA) within 1 min, while protonation of *O produces surfaceconfined hydroxyl radicals (•OHad) that achieve 94.7% removal of benzoic acid (BA) and other aromatic compounds. Compared to ozonation alone, the O₃/Cu-NC-3 system enhances OA and BA removal by 34.5- and 1.5-fold, respectively. Atomic-level Cu dispersion induces carbon defects that enrich surface O₃, and Cu−N₄ coordination sites promote its conversion to *O and •OHad. This dual-oxidation mechanism effectively ensures and enables broadspectrum pollutant removal and exceptional catalytic stability under long-term operation. Therefore, the O₃/Cu-NC-3 system offers a robust and efficient approach for treating real wastewater containing diverse interfering species.

School/Discipline

Dissertation Note

Provenance

Description

Published as part of Environmental Science & Technology special issue “Materials Science and Environmental Applicability”.

Access Status

Rights

© 2025 American Chemical Society

License

Call number

Persistent link to this record