Lox jet atomization under transverse acoustic oscillations
Date
2014
Authors
Hardi, J.
Gomez Martinez, H.
Oschwald, M.
Dally, B.
Editors
Advisors
Journal Title
Journal ISSN
Volume Title
Type:
Journal article
Citation
Journal of Propulsion and Power: devoted to aerospace propulsion and power, 2014; 30(2):337-349
Statement of Responsibility
Justin S. Hardi, Harvey Camilo Gomez Martinez, and Michael Oschwald and Bassam B. Dally
Conference Name
DOI
Abstract
Testing has been conducted with the BKH rocket combustor at the European Research and Technology Test Facility P8 for cryogenic rocket engines at DLR Lampoldshausen. BKH has multiple shear coaxial injectors and an exhaust modulation system for forcing excitation of acoustic resonances in the combustion chamber. Optical access windows allow the application of parallel high-speed shadowgraph and flame emission imaging of the near-injector region. This paper reports measurements of the intact liquid oxygen core during forced excitation of the first transverse acoustic mode. High-speed shadowgraph images show that the mechanism of core breakup and atomization differs between off-resonance and first transverse excitation conditions. The core length is found to decrease with increasing amplitude of acoustic pressure,or equivalently with transverse acoustic velocity, with a core length reduction of up to 70% for conditions approaching those of naturally occurring high frequency combustion instabilities. This dependence is shown to be distinguishable for differing operating conditions of the combustor. Fluctuation in core length also decreases with increasing excitation amplitude. Knowledge of the influence of the transverse acoustic field on the LOx core is important for understanding the driving mechanisms of combustion instabilities.
School/Discipline
Dissertation Note
Provenance
Description
Access Status
Rights
Copyright © 2013 by the authors.