A Parameterised Complexity Analysis of Bi-level Optimisation with Evolutionary Algorithms

Date

2016

Authors

Corus, D.
Lehre, P.
Neumann, F.
Pourhassan, M.

Editors

Advisors

Journal Title

Journal ISSN

Volume Title

Type:

Journal article

Citation

Evolutionary Computation, 2016; 24(1):183-203

Statement of Responsibility

Dogan Corus, Per Kristian Lehre, Frank Neumann, Mojgan Pourhassan

Conference Name

Abstract

Bi-level optimisation problems have gained increasing interest in the field of combinatorial optimisation in recent years. In this paper, we analyse the runtime of some evolutionary algorithms for bi-level optimisation problems. We examine two NP-hard problems, the generalised minimum spanning tree problem and the generalised travelling salesperson problem in the context of parameterised complexity. For the generalised minimum spanning tree problem, we analyse the two approaches presented by Hu and Raidl ( 2012 ) with respect to the number of clusters that distinguish each other by the chosen representation of possible solutions. Our results show that a (1+1) evolutionary algorithm working with the spanning nodes representation is not a fixed-parameter evolutionary algorithm for the problem, whereas the problem can be solved in fixed-parameter time with the global structure representation. We present hard instances for each approach and show that the two approaches are highly complementary by proving that they solve each other's hard instances very efficiently. For the generalised travelling salesperson problem, we analyse the problem with respect to the number of clusters in the problem instance. Our results show that a (1+1) evolutionary algorithm working with the global structure representation is a fixed-parameter evolutionary algorithm for the problem.

School/Discipline

Dissertation Note

Provenance

Description

Access Status

Rights

© 2016 Massachusetts Institute of Technology

License

Call number

Persistent link to this record