Barwick, S.Jackson, W.2014-09-282014-09-282014Designs, Codes and Cryptography, 2014; 71(3):541-5450925-10221573-7586http://hdl.handle.net/2440/85545In “Barwick and Jackson (Finite Fields Appl. 18:93–107 2012)”, the authors determine the representation of Order-q-subplanes s and order-q-sublines of PG(2, q³) in the Bruck–Bose representation in PG(6, q). In particular, they showed that an Order-q-subplanes of PG(2, q³) corresponds to a certain ruled surface in PG(6, q). In this article we show that the converse holds, namely that any ruled surface satisfying the required properties corresponds to a tangent Order-q-subplanes of PG(2, q³).en© Springer Science+Business Media New York 2012Bruck–Bose representation; PG(2, q³); Order q subplanes; 51E20A characterisation of tangent subplanes of PG(2, q³)A characterisation of tangent subplanes of PG(2, q (3))Journal article002013754510.1007/s10623-012-9754-70003341791000102-s2.0-8489907288014779Barwick, S. [0000-0001-9492-0323]Jackson, W. [0000-0002-0894-0916]