Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/132635
Citations
Scopus Web of Science® Altmetric
?
?
Type: Journal article
Title: Synergistic Effect of Surface Chemistry and Surface Topography Gradient on Osteogenic/Adipogenic Differentiation of hMSCs
Author: Liu, X.
Wang, Y.
He, Y.
Wang, X.
Zhang, R.
Bachhuka, A.
Madathiparambil Visalakshan, R.
Feng, Q.
Vasilev, K.
Citation: ACS Applied Materials and Interfaces, 2021; 13(26):30306-30316
Publisher: American Chemical Society
Issue Date: 2021
ISSN: 1944-8244
1944-8252
Statement of
Responsibility: 
Xujie Liu, Yakun Wang, Yan He, Xiaofeng Wang, Ranran Zhang, Akash Bachhuka, Rahul Madathiparambil Visalakshan, Qingling Feng, and Krasimir Vasilev
Abstract: Much attention has been paid to understanding the individual effects of surface chemistry or topography on cell behavior. However, the synergistic influence of both surface chemistry and surface topography on differentiation of human mesenchymal stem cells (hMSCs) should also be addressed. Here, gold nanoparticles were immobilized in an increasing number density manner to achieve a surface topography gradient; a thin film rich in amine (-NH<sub>2</sub>) or methyl (-CH<sub>3</sub>) chemical groups was plasma-polymerized to adjust the surface chemistry of the outermost layer (ppAA and ppOD, respectively). hMSCs were cultured on these model substrates with defined surface chemistry and surface topography gradient. The morphology and focal adhesion (FA) formation of hMSCs were first examined. hMSC differentiation was then co-induced in osteogenic and adipogenic medium, as well as in the presence of extracellular-signal-regulated kinase1/2 (ERK1/2) and RhoA/Rho-associated protein kinase (ROCK) inhibitors. The results show that the introduction of nanotopography could enhance FA formation and osteogenesis but inhibited adipogenesis on both ppAA and ppOD surfaces, indicating that the surface chemistry could regulate hMSC differentiation, in a surface topography-dependent manner. RhoA/ROCK and ERK1/2 signaling pathways may participate in this process. This study demonstrated that surface chemistry and surface topography can jointly affect cell morphology, FA formation, and thus osteogenic/adipogenic differentiation of hMSCs. These findings highlight the importance of the synergistic effect of different material properties on regulation of cell response, which has important implications in designing functional biomaterials.
Keywords: surface topography; surface chemistry; plasma polymerization; hMSCs; stem cell differentiation
Rights: © 2021 American Chemical Society
DOI: 10.1021/acsami.1c03915
Grant ID: http://purl.org/au-research/grants/arc/DP15104212
http://purl.org/au-research/grants/nhmrc/APP1122825
Published version: http://dx.doi.org/10.1021/acsami.1c03915
Appears in Collections:Earth and Environmental Sciences publications

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.