Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/43083
Citations
Scopus Web of Science® Altmetric
?
?
Type: Journal article
Title: Controls on soil nitrogen cycling and microbial community composition across land use and incubation temperature
Author: Cookson, W.
Osman, M.
Marschner, P.
Abaye, D.
Clark, I.
Murphy, D.
Stockdale, E.
Watson, C.
Citation: Soil Biology and Biochemistry, 2007; 39(3):744-756
Publisher: Pergamon-Elsevier Science Ltd
Issue Date: 2007
ISSN: 0038-0717
1879-3428
Statement of
Responsibility: 
W.R. Cookson, M. Osman, P. Marschner, D.A. Abaye, I. Clark, D.V. Murphy, E.A. Stockdale and C.A. Watson
Abstract: We conducted a laboratory incubation of forest (Scots pine (Pinus sylvestris) or beech (Fagus sylvatica)), grassland (Trifolium repens/Lolium perenne) and arable (organic and conventional) soils at 5 and 25 °C. We aimed to clarify the mechanisms of short-term (2-weeks) nitrogen (N) cycling processes and microbial community composition in relation to dissolved organic carbon (DOC) and N (DON) availability and selected soil properties. N cycling was measured by 15N pool dilution and microbial community composition by denaturing gradient gel electrophoresis (DGGE), phospholipid fatty acid (PLFA) and community level physiological profiles (CLPP). Soil DOC increased in the order of arable<grassland<forest soil while DON and gross N fluxes increased in the order of forest<arable<grassland soil; land use had no affect on respiration rate. Soil DOC was lower, while respiration, DON and gross N fluxes were higher at 25 than 5 °C. Gross N fluxes, respiration and bacterial biomass were all positively correlated with each other. Gross N fluxes were positively correlated with pH and DON, and negatively correlated with organic matter, fungal biomass, DOC and DOC/DON ratio. Respiration rate was positively correlated with bacterial biomass, DON and DOC/DON ratio. Multiple linear modelling indicated that soil pH, organic matter, bacterial biomass, DON and DOC/DON ratio were important in predicting gross N mineralization. Incubation temperature, pH and total-C were important in predicting gross nitrification, while gross N mineralization, gross nitrification and pH were important in predicting gross N immobilization. Permutation multivariate analysis of variance indicated that DGGE, CLPP and PLFA profiles were all significantly (P<0.05) affected by land use and incubation temperature. Multivariate regressions indicated that incubation temperature, pH and organic matter content were important in predicting DGGE, CLPP and PLFA profiles. PLFA and CLPP were also related to DON, DOC, ammonium and nitrate contents. Canonical correlation analysis showed that PLFA and CLPP were related to differences in the rates of gross N mineralization, gross nitrification and soil respiration. Our study indicates that vegetation type and/or management practices which control soil pH and mediate dissolved organic matter availability were important predictors of gross N fluxes and microbial composition in this short-term experiment.
Description: Copyright © 2006 Elsevier Ltd All rights reserved.
DOI: 10.1016/j.soilbio.2006.09.022
Description (link): http://www.elsevier.com/wps/find/journaldescription.cws_home/332/description#description
Published version: http://dx.doi.org/10.1016/j.soilbio.2006.09.022
Appears in Collections:Aurora harvest 6
Earth and Environmental Sciences publications

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.