Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/47884
Citations
Scopus Web of Science® Altmetric
?
?
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGarrick, Daviden
dc.contributor.authorSharpe, Jackie A.en
dc.contributor.authorArkell, Ruthen
dc.contributor.authorDobbie, Lorraineen
dc.contributor.authorSmith, Andrew J. H.en
dc.contributor.authorWood, William G.en
dc.contributor.authorHiggs, Douglas R.en
dc.contributor.authorGibbons, Richard J.en
dc.date.issued2006en
dc.identifier.citationPLoS Genetics, 2006; 2(4):e58-(27p.)en
dc.identifier.urihttp://hdl.handle.net/2440/47884-
dc.description© 2006 Garrick et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.en
dc.description.abstractATRX is an X-encoded member of the SNF2 family of ATPase/helicase proteins thought to regulate gene expression by modifying chromatin at target loci. Mutations in ATRX provided the first example of a human genetic disease associated with defects in such proteins. To better understand the role of ATRX in development and the associated abnormalities in the ATR-X (alpha thalassemia mental retardation, X-linked) syndrome, we conditionally inactivated the homolog in mice, Atrx, at the 8- to 16-cell stage of development. The protein, Atrx, was ubiquitously expressed, and male embryos null for Atrx implanted and gastrulated normally but did not survive beyond 9.5 days postcoitus due to a defect in formation of the extraembryonic trophoblast, one of the first terminally differentiated lineages in the developing embryo. Carrier female mice that inherit a maternal null allele should be affected, since the paternal X chromosome is normally inactivated in extraembryonic tissues. Surprisingly, however, some carrier females established a normal placenta and appeared to escape the usual pattern of imprinted X-inactivation in these tissues. Together these findings demonstrate an unexpected, specific, and essential role for Atrx in the development of the murine trophoblast and present an example of escape from imprinted X chromosome inactivation.en
dc.publisherPublic Library of Scienceen
dc.titleLoss of Atrx affects trophoblast development and the pattern of x-inactivation in extraembryonic tissuesen
dc.typeJournal articleen
dc.contributor.organisationCentre for the Molecular Genetics of Developmenten
dc.identifier.doi10.1371/journal.pgen.0020058en
Appears in Collections:Centre for the Molecular Genetics of Development publications

Files in This Item:
File SizeFormat 
hdl_47884.pdf581.78 kBPublisher's PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.