Please use this identifier to cite or link to this item: http://hdl.handle.net/2440/110804
Citations
Scopus Web of Science® Altmetric
?
?
Type: Journal article
Title: Constraints on Galactic neutrino emission with seven years of IceCube data
Author: Collaboration, I.
Aartsen, M.
Ackermann, M.
Adams, J.
Aguilar, J.
Ahlers, M.
Ahrens, M.
Samarai, I.
Altmann, D.
Andeen, K.
Anderson, T.
Ansseau, I.
Anton, G.
Argüelles, C.
Auffenberg, J.
Axani, S.
Bagherpour, H.
Bai, X.
Barron, J.
Barwick, S.
et al.
Citation: Astrophysical Journal, 2017; 849(1):67-1-67-11
Publisher: IOP Publishing
Issue Date: 2017
ISSN: 0004-637X
1538-4357
Statement of
Responsibility: 
M.G. Aartsen … G.C. Hill … J. Kim, M. Kim … S. Sarkar, B.J. Whelan, Y. Xu … [et al.] (the ICECUBE Collaboration)
Abstract: The origins of high-energy astrophysical neutrinos remain a mystery despite extensive searches for their sources. We present constraints from seven years of IceCube Neutrino Observatory muon data on the neutrino flux coming from the Galactic plane. This flux is expected from cosmic-ray interactions with the interstellar medium or near localized sources. Two methods were developed to test for a spatially extended flux from the entire plane, both of which are maximum likelihood fits but with different signal and background modeling techniques. We consider three templates for Galactic neutrino emission based primarily on gamma-ray observations and models that cover a wide range of possibilities. Based on these templates and in the benchmark case of an unbroken E⁻²·⁵ power-law energy spectrum, we set 90% confidence level upper limits, constraining the possible Galactic contribution to the diffuse neutrino flux to be relatively small, less than 14% of the flux reported in Aartsen et al. above 1 TeV. A stacking method is also used to test catalogs of known high-energy Galactic gamma-ray sources.
Keywords: Gamma rays; ISM
Rights: © 2017. The American Astronomical Society. All rights reserved.
RMID: 0030079130
DOI: 10.3847/1538-4357/aa8dfb
Appears in Collections:Physics publications

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.