Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/112995
Citations
Scopus Web of Science® Altmetric
?
?
Type: Journal article
Title: PCDH19 regulation of neural progenitor cell differentiation suggests asynchrony of neurogenesis as a mechanism contributing to PCDH19 Girls Clustering Epilepsy
Author: Homan, C.
Pederson, S.
To, T.-H.
Tan, C.
Piltz, S.
Corbett, M.
Wolvetang, E.
Thomas, P.
Jolly, L.
Gecz, J.
Citation: Neurobiology of Disease, 2018; 116:106-119
Publisher: Elsevier
Issue Date: 2018
ISSN: 0969-9961
1095-953X
Statement of
Responsibility: 
Claire C. Homana, Stephen Pederson, Thu-Hien To, Chuan Tan, Sandra Piltz, Mark A. Corbett, Ernst Wolvetang, Paul Q. Thomas, Lachlan A. Jolly, Jozef Gecz
Abstract: PCDH19-Girls Clustering Epilepsy (PCDH19-GCE) is a childhood epileptic encephalopathy characterised by a spectrum of neurodevelopmental problems. PCDH19-GCE is caused by heterozygous loss-of-function mutations in the X-chromosome gene, Protocadherin 19 (PCDH19) encoding a cell-cell adhesion molecule. Intriguingly, hemizygous males are generally unaffected. As PCDH19 is subjected to random X-inactivation, heterozygous females are comprised of a mosaic of cells expressing either the normal or mutant allele, which is thought to drive pathology. Despite being the second most prevalent monogeneic cause of epilepsy, little is known about the role of PCDH19 in brain development. In this study we show that PCDH19 is highly expressed in human neural stem and progenitor cells (NSPCs) and investigate its function in vitro in these cells of both mouse and human origin. Transcriptomic analysis of mouse NSPCs lacking Pcdh19 revealed changes to genes involved in regulation of neuronal differentiation, and we subsequently show that loss of Pcdh19 causes increased NSPC neurogenesis. We reprogramed human fibroblast cells harbouring a pathogenic PCDH19 mutation into human induced pluripotent stem cells (hiPSC) and employed neural differentiation of these to extend our studies into human NSPCs. As in mouse, loss of PCDH19 function caused increased neurogenesis, and furthermore, we show this is associated with a loss of human NSPC polarity. Overall our data suggests a conserved role for PCDH19 in regulating mammalian cortical neurogenesis and has implications for the pathogenesis of PCDH19-GCE. We propose that the difference in timing or "heterochrony" of neuronal cell production originating from PCDH19 wildtype and mutant NSPCs within the same individual may lead to downstream asynchronies and abnormalities in neuronal network formation, which in-part predispose the individual to network dysfunction and epileptic activity.
Keywords: PCDH19
Epilepsy
Neurogenesis
Induced pluripotent stem cells
Polarity
Neural stem and progenitor cells
Description: Available online 12 May 2018
Rights: © 2018 Published by Elsevier Inc.
DOI: 10.1016/j.nbd.2018.05.004
Grant ID: http://purl.org/au-research/grants/nhmrc/628952
http://purl.org/au-research/grants/nhmrc/1041920
http://purl.org/au-research/grants/arc/DE160100620
Published version: http://dx.doi.org/10.1016/j.nbd.2018.05.004
Appears in Collections:Aurora harvest 8
Molecular and Biomedical Science publications

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.