Please use this identifier to cite or link to this item: http://hdl.handle.net/2440/118973
Citations
Scopus Web of Science® Altmetric
?
?
Type: Journal article
Title: A micromechanical investigation for the effects of pore size and its distribution on geopolymer foam concrete under uniaxial compression
Author: Nguyen, T.
Bui, H.
Ngo, T.
Nguyen, G.
Kreher, M.
Darve, F.
Citation: Engineering Fracture Mechanics, 2019; 209:228-244
Publisher: Elsevier
Issue Date: 2019
ISSN: 0013-7944
1873-7315
Statement of
Responsibility: 
Thang T. Nguyen, Ha H. Bui, Tuan D. Ngo, Giang D. Nguyen, Markus U. Kreher, Felix Darve
Abstract: This study investigates the influences of pore-structure and mortar properties on the fracture behaviour of geopolymer foamed concrete. The discrete element method (DEM) is utilised to explicitly describe the internal pore-structure, while the mortar phase is modelled at the micro/meso-scale using a cohesive-frictional model. Numerical tests are conducted on numerous DEM foam concrete specimens with various porosities and pore-size distributions. The numerical results show that the pore-size can have a profound effect on the material’s fracture resistance. A decrease in pore size results in higher compressive strength and this influence is more significant for foam concrete with lower porosity. However, the elastic modulus seems to be less sensitive to the pore size variation. Further looking at the fracture process of the foam concrete at the micro-scale shows a gradual transition contact bonds from compressive to tensile modes, which is triggered by the breakage of contact bonds persisting as the loading continues. The study also demonstrates that the pore size distribution mainly affects the empirical power exponent of Balshin’s equation of compressive strength-porosity relationship, while the mortar properties have a profound influence on the strength of the material at zero porosity.
Keywords: Foam concrete Micromechanical investigation; Pore-size effect; Porosity; DEM
Rights: © 2019 Elsevier Ltd. All rights reserved.
RMID: 0030107990
DOI: 10.1016/j.engfracmech.2019.01.033
Grant ID: http://purl.org/au-research/grants/arc/LP130100884
http://purl.org/au-research/grants/arc/DP160100775
http://purl.org/au-research/grants/arc/DP170103793
http://purl.org/au-research/grants/arc/FT140100408
Appears in Collections:Civil and Environmental Engineering publications

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.