Please use this identifier to cite or link to this item:
Scopus Web of Science® Altmetric
Full metadata record
DC FieldValueLanguage
dc.contributor.authorElliott, R.-
dc.contributor.authorMalcolm, W.-
dc.contributor.editorDjaferis, T.-
dc.identifier.citationProceedings of the 40th IEEE Conference on Decision and Control : December 4-7, 2001, vol. 1, pp. 376-381-
dc.description.abstractWe compute general smoothing dynamics for partially observed dynamical systems with Poisson observations. The model we consider is a Markov modulated Poisson processes, whose intensity depends upon the state of unobserved Itoˆ process. All smoother dynamics depend, in some manner, upon filtered estimates of an unobserved state process. To compute filtered estimates of state, we establish a Duncan-Mortenson-Zakai (DMZ) equation, however, this filter includes a stochastic integration. By adapting the transformation techniques developed in Clark (1978) and Davis (1980) we compute robust a form of the DMZ equation which does not include stochastic integration. To construct smoothers, we exploit a duality between forward and backwards dynamics. Smoothed state estimates are computed by using the forward and backwards robust equations. The general smoother dynamics we present can readily be applied to specific smoothing algorithms, referred to in the literature as: fixed point smoothing, fixed lag smoothing and fixed interval smoothing.-
dc.publisherIEEE Control Systems Society-
dc.relation.ispartofProceedings of the 40th IEEE Conference on Decision and Control (CDC)-
dc.rights© 2001 IEEE-
dc.titleRobust smoother dynamics for Poisson processes driven by an Ito^diffusion-
dc.typeConference paper-
dc.contributor.conferenceIEEE Conference on Decision and Control (40th : 2001 : Orlando, Florida)-
Appears in Collections:Applied Mathematics publications
Aurora harvest 2

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.