Please use this identifier to cite or link to this item: http://hdl.handle.net/2440/309
Citations
Scopus Web of Science® Altmetric
?
?
Full metadata record
DC FieldValueLanguage
dc.contributor.authorStokes, Y.en
dc.date.issued2003en
dc.identifier.citationThe ANZIAM Journal, 2003; 44(4):561-568en
dc.identifier.issn1446-1811en
dc.identifier.issn1446-8735en
dc.identifier.urihttp://hdl.handle.net/2440/309-
dc.description© Australian Mathematical Society 2003en
dc.description.abstractTo assess rotational deformity in a broken forearm, an orthopaedic surgeon needs to determine the amount of rotation of the radius from one or more two-dimensional x-rays of the fracture. This requires only simple first-year university mathematics --- rotational transformations of ellipses plus a little differential calculus --- which yields a general formula giving the rotation angle from information obtained from an x-ray. Preliminary comparisons with experimental results are excellent. This is a practical problem that may be useful to motivate the teaching of conic sections.en
dc.description.statementofresponsibilityY. M. Stokesen
dc.language.isoenen
dc.publisherAustralian Mathematical Societyen
dc.source.urihttp://www.austms.org.au/Publ/ANZIAM/V44P4/1909.htmlen
dc.titleDetermining rotational deformity in broken forearmsen
dc.typeJournal articleen
dc.identifier.rmid0020030658en
dc.identifier.doi10.1017/S144618110001292Xen
dc.identifier.pubid58684-
pubs.library.collectionApplied Mathematics publicationsen
pubs.verification-statusVerifieden
pubs.publication-statusPublisheden
dc.identifier.orcidStokes, Y. [0000-0003-0027-6077]en
Appears in Collections:Applied Mathematics publications

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.