Please use this identifier to cite or link to this item:
Scopus Web of Science® Altmetric
Type: Journal article
Title: Multiple functions of CXCL12 in a syngeneic model of breast cancer
Author: Williams, S.
Harata-Lee, Y.
Anderson, R.
Comerford, I.
Smyth, M.
McColl, S.
Citation: Molecular Cancer, 2010; 9(250):1-10
Publisher: BioMed Central Ltd.
Issue Date: 2010
ISSN: 1476-4598
Statement of
Sharon A Williams, Yuka Harata-Lee, Iain Comerford, Robin L Anderson, Mark J Smyth and Shaun R McColl
Abstract: BACKGROUND: A growing body of work implicates chemokines, in particular CXCL12 and its receptors, in the progression and site-specific metastasis of various cancers, including breast cancer. Various agents have been used to block the CXCL12-CXCR4 interaction as a means of inhibiting cancer metastasis. However, as a potent chemotactic factor for leukocytes, CXCL12 also has the potential to enhance anti-cancer immunity. To further elucidate its role in breast cancer progression, CXCL12 and its antagonist CXCL12(P2G) were overexpressed in the syngeneic 4T1.2 mouse model of breast carcinoma. RESULTS: While expression of CXCL12(P2G) significantly inhibited metastasis, expression of wild-type CXCL12 potently inhibited both metastasis and primary tumor growth. The effects of wild-type CXCL12 were attributed to an immune response characterized by the induction of CD8+ T cell activity, enhanced cell-mediated cytotoxicity, increased numbers of CD11c+ cells in the tumor-draining lymph nodes and reduced accumulation of myeloid-derived suppressor cells in the spleen.CONCLUSIONS: This study highlights the need to consider carefully therapeutic strategies that block CXCL12 signaling. Therapies that boost CXCL12 levels at the primary tumor site may prove more effective in the treatment of metastatic breast cancer.
Keywords: Dendritic Cells
Cell Line, Tumor
Mice, Inbred BALB C
Mice, SCID
Breast Neoplasms
Receptors, CXCR4
Flow Cytometry
Cell Proliferation
Chemokine CXCL12
Rights: © 2010 Williams et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License(, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
DOI: 10.1186/1476-4598-9-250
Published version:
Appears in Collections:Aurora harvest 5
IPAS publications
Molecular and Biomedical Science publications

Files in This Item:
File Description SizeFormat 
hdl_61297.pdfPublished version2.17 MBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.