Please use this identifier to cite or link to this item:
Scopus Web of Science® Altmetric
Type: Journal article
Title: Nanosecond pulse lasers for retinal applications
Author: Wood, J.
Plunkett, M.
Previn, V.
Chidlow, G.
Casson, R.
Citation: Lasers in Surgery and Medicine, 2011; 43(6):499-510
Publisher: Wiley-liss
Issue Date: 2011
ISSN: 0196-8092
Statement of
John P.M. Wood, Malcolm Plunkett, Victor Previn, Glyn Chidlow and Robert J. Casson
Abstract: Background and Objectives: Thermal lasers are routinely used to treat certain retinal disorders although they cause collateral damage to photoreceptors. The current study evaluated a confined, non-conductive thermal, 3-nanosecond pulse laser in order to determine how to produce the greatest therapeutic range without causing collateral damage. Data were compared with that obtained from a standard thermal laser. Materials and Methods: Porcine ocular explants were used; apposed neuroretina was also in place for actual laser treatment. After treatment, the retina was removed and a calcein-AM assay was used to assess retinal pigmented epithelium (RPE) cell viability in the explants. Histological methods were also employed to examine lased transverse explant sections. Three nanoseconds pulse lasers with either speckle- or gaussian-beam profile were employed in the study. Comparisons were made with a 100 milliseconds continuous wave (CW) 532 nm laser. The therapeutic energy range ratio was defined as the minimum visible effect threshold (VET) versus the minimum detectable RPE kill threshold. Results: The 3-nanosecond lasers produced markedly lower minimum RPE kill threshold levels than the CW laser (e.g., 36 mJ/cm2 for speckle-beam and 89 mJ/cm2 for gaussian-beam profile nanosecond lasers vs. 7,958 mJ/cm2 for CW laser). VET values were also correspondingly lower for the nanosecond lasers (130 mJ/cm2 for 3 nanoseconds speckle-beam and 219 mJ/cm2 for gaussian-beam profile vs. 1,0346 mJ/cm2 for CW laser). Thus, the therapeutic range ratios obtained with the nanosecond lasers were much more favorable than that obtained by the CW laser: 3.6:1 for the speckle-beam and 2.5:1 for the gaussian-beam profile 3-nanosecond lasers versus 1.3:1 for the CW laser. Conclusions: Nanosecond lasers, particularly with a speckle-beam profile, provide a much wider therapeutic range of energies over which RPE treatment can be performed, without damage to the apposed retina, as compared with conventional CW lasers. These results may have important implications for the treatment of retinal disease.
Keywords: retinal pigment epithelium; nanosecond laser; microbuble; melanosome; diabetic macular edema
Rights: Copyright © 2011 Wiley-Liss, Inc.
RMID: 0020111792
DOI: 10.1002/lsm.21087
Appears in Collections:Opthalmology & Visual Sciences publications

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.