Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/78236
Type: Conference paper
Title: Numerical simulation of unloading process of rocks under high initial stress
Author: Tao, M.
Wu, C.
Li, X.
Citation: Proceedings of the 2012 7th Asian Rock Mechanics Symposium, ARMS7; pp.1-8
Issue Date: 2012
Conference Name: Asian Rock Mechanics Symposium (7th : 2012 : Seoul, Korea)
Statement of
Responsibility: 
M. Tao, C. Wu, X. Li
Abstract: The object of this study is to investigate the unloading failure mechanism of hard rocks in the unloading process. A commercial finite element program LS-DYNA was employed to simulate the rock unloading process. The implicit and explicit methods were performed in sequence to simulate the static initialization-dynamic unloading process of rocks. The numerical results indicated that the rock failure can be induced by releasing of the initial stress, and the previous result of the equivalent initial stress release rate (EISRR) theory based on the 1D stress state is not suitable for 3D stress state. In 3D stress state, a new definition of equivalent strain energy release rate (ESERR) was introduced. The further study indicated that the ESERR can characterize the effect of different confining stresses and different unloading path on rock unloading. A significant finding is that the ESERR can quantitatively describe the characteristics of the unloading process under 3D stress state. This finding indicated that in practical underground excavation engineering, dynamically controlling the ESERR can be used to increase excavation potential of rocks and minimize the needed external excavation energy by using the initial energy.’
Rights: Copyright status unknown
Appears in Collections:Aurora harvest 4
Civil and Environmental Engineering publications

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.