Please use this identifier to cite or link to this item:
Scopus Web of Science® Altmetric
Type: Journal article
Title: The carbon inventory in a quiescent, filamentary molecular cloud in G328
Author: Burton, M.
Ashley, M.
Braiding, C.
Storey, J.
Kulesa, C.
Hollenbach, D.
Wolfire, M.
Gluck, C.
Rowell, G.
Citation: The Astrophysical Journal: an international review of astronomy and astronomical physics, 2014; 782(2):1-8
Publisher: Institute of Physics
Issue Date: 2014
ISSN: 0004-637X
Organisation: Institute for Photonics & Advanced Sensing (IPAS)
Statement of
Michael G. Burton, Michael C. B. Ashley, Catherine Braiding, John W. V. Storey, Craig Kulesa, David J. Hollenbach, Mark Wolfire, Christian Glück and Gavin Rowell
Abstract: We present spectral line images of [C I] 809 GHz, CO J = 1-0 115 GHz and H I 1.4 GHz line emission, and calculate the corresponding C, CO and H column densities, for a sinuous, quiescent giant molecular cloud about 5 kpc distant along the l = 328° sightline (hereafter G328) in our Galaxy. The [C I] data comes from the High Elevation Antarctic Terahertz telescope, a new facility on the summit of the Antarctic plateau where the precipitable water vapor falls to the lowest values found on the surface of the Earth. The CO and H I data sets come from the Mopra and Parkes/ATCA telescopes, respectively. We identify a filamentary molecular cloud, ~75 × 5 pc long with mass ~4 × 104 M ☉ and a narrow velocity emission range of just 4 km s–1. The morphology and kinematics of this filament are similar in CO, [C I], and H I, though in the latter appears as self-absorption. We calculate line fluxes and column densities for the three emitting species, which are broadly consistent with a photodissociation region model for a GMC exposed to the average interstellar radiation field. The [C/CO] abundance ratio averaged through the filament is found to be approximately unity. The G328 filament is constrained to be cold (T Dust < 20 K) by the lack of far-IR emission, to show no clear signs of star formation, and to only be mildly turbulent from the narrow line width. We suggest that it may represent a GMC shortly after formation, or perhaps still in the process of formation.
Keywords: ISM: abundances
ISM: clouds
ISM: molecules
ISM: structure
radio lines: ISM
Description: Extent: 8 p.
Rights: © 2014.The American Astronomical Society. All rights reserved.
DOI: 10.1088/0004-637X/782/2/72
Grant ID:
Appears in Collections:Aurora harvest 4
IPAS publications

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.