Please use this identifier to cite or link to this item:
Scopus Web of Science® Altmetric
Type: Journal article
Title: Improved PMI-based input variable selection approach for artificial neural network and other data driven environmental and water resource models
Author: Li, X.
Maier, H.
Zecchin, A.
Citation: Environmental Modelling and Software, 2015; 65:15-29
Publisher: Elsevier
Issue Date: 2015
ISSN: 1364-8152
Statement of
Xuyuan Li, Holger R. Maier, Aaron C. Zecchin
Abstract: Abstract not available
Keywords: Artificial neural networks; general regression neural networks; partial mutual information; kernel bandwidth; kernel density estimation; environment; hydrology and water resources; input variable selection
Rights: © 2014 Elsevier Ltd. All rights reserved.
RMID: 0030022045
DOI: 10.1016/j.envsoft.2014.11.028
Appears in Collections:Civil and Environmental Engineering publications

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.